Problem 1: Compound Angle Identity
Prove the identity:
\(tan(x+y) = \frac{tan(x) + tan(y)}{1 – tan(x)tan(y)}\)Proof:
We can start with the sum formulas for sine and cosine:
\(sin(x+y) = sin(x)cos(y) + cos(x)sin(y)\) \(cos(x+y) = cos(x)cos(y) – sin(x)sin(y)\)Then, we can divide the sine formula by the cosine formula:
\(tan(x+y) = \frac{sin(x)cos(y) + cos(x)sin(y)}{cos(x)cos(y) – sin(x)sin(y)}\)Now, divide both the numerator and denominator by \(cos(x)cos(y)\):
\(tan(x+y) = \frac{\frac{sin(x)}{cos(x)} + \frac{sin(y)}{cos(y)}}{1 – \frac{sin(x)}{cos(x)}\frac{sin(y)}{cos(y)}}\)Simplify to get the desired result:
\(tan(x+y) = \frac{tan(x) + tan(y)}{1 – tan(x)tan(y)}\)Problem 2: Double Angle Identities
Given:
- \(sin(x) = \frac{3}{5}\)
- x is in the first quadrant
Find:
- \(sin(2x)\)
- \(cos(2x)\)
- \(tan(2x)\)
Solution:
Using the Pythagorean identity, we find:
\(cos(x) = \frac{4}{5}\)Now, we can use the double angle formulas:
\(sin(2x) = 2sin(x)cos(x) = 2(\frac{3}{5})(\frac{4}{5}) = \frac{24}{25}\) \(cos(2x) = cos^2(x) – sin^2(x) = (\frac{4}{5})^2 – (\frac{3}{5})^2 = \frac{7}{25}\) \(tan(2x) = \frac{sin(2x)}{cos(2x)} = \frac{\frac{24}{25}}{\frac{7}{25}} = \frac{24}{7}\)Problem 3: Half-Angle Identities
Given:
- \(cos(x) = -\frac{1}{3}\)
- x is in the second quadrant
Find:
- \(sin(\frac{x}{2})\)
- \(cos(\frac{x}{2})\)
- \(tan(\frac{x}{2})\)
Solution:
Since x is in the second quadrant, \(\frac{x}{2}\) is in the first quadrant. Therefore, all trigonometric functions of \(\frac{x}{2}\) will be positive.
First, we find \(sin(x)\) using the Pythagorean identity:
\(sin^2(x) + cos^2(x) = 1\) \(sin^2(x) + \left(-\frac{1}{3}\right)^2 = 1\) \(sin^2(x) = \frac{8}{9}\) \(sin(x) = \frac{2\sqrt{2}}{3}\) (since x is in the second quadrant, sin(x) is positive)Now, we can use the half-angle formulas:
\(sin(\frac{x}{2}) = \pm \sqrt{\frac{1 – cos(x)}{2}} = \sqrt{\frac{1 – (-\frac{1}{3})}{2}} = \sqrt{\frac{2}{3}}\) \(cos(\frac{x}{2}) = \pm \sqrt{\frac{1 + cos(x)}{2}} = \sqrt{\frac{1 + (-\frac{1}{3})}{2}} = \sqrt{\frac{1}{3}}\) \(tan(\frac{x}{2}) = \frac{sin(\frac{x}{2})}{cos(\frac{x}{2})} = \frac{\sqrt{\frac{2}{3}}}{\sqrt{\frac{1}{3}}} = \sqrt{2}\)Problem 4: Product-to-Sum Identities
Express \(sin(3x)cos(2x)\) as a sum or difference of sines or cosines.
We can use the product-to-sum formula:
\(sin(A)cos(B) = \frac{1}{2}[sin(A+B) + sin(A-B)]\)Applying this to our problem, we get:
\(sin(3x)cos(2x) = \frac{1}{2}[sin(3x+2x) + sin(3x-2x)]\) \(= \frac{1}{2}[sin(5x) + sin(x)]\)Problem 5: Sum-to-Product Identities
Express \(sin(5x) + sin(3x)\) as a product of sines or cosines.
We can use the sum-to-product formula:
\(sin(A) + sin(B) = 2sin(\frac{A+B}{2})cos(\frac{A-B}{2})\)Applying this to our problem, we get:
\(sin(5x) + sin(3x) = 2sin(\frac{5x+3x}{2})cos(\frac{5x-3x}{2})\) \(= 2sin(4x)cos(x)\)Problem 6: Trigonometric Equations
Solve the equation:
\(2sin^2(x) – 3sin(x) + 1 = 0\)for \(0 ≤ x ≤ 2Ï€\)
Let \(u = sin(x)\). Then the equation becomes:
\(2u^2 – 3u + 1 = 0\)Factoring this quadratic equation, we get:
\((2u – 1)(u – 1) = 0\)So, either:
- \(2u – 1 = 0\) => \(u = \frac{1}{2}\) => \(sin(x) = \frac{1}{2}\)
- \(u – 1 = 0\) => \(u = 1\) => \(sin(x) = 1\)
For \(sin(x) = \frac{1}{2}\), the solutions in the given interval are:
- \(x = \frac{\pi}{6}\)
- \(x = \frac{5\pi}{6}\)
For \(sin(x) = 1\), the solution in the given interval is:
- \(x = \frac{\pi}{2}\)
Therefore, the solutions to the given equation are:
\(x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}\)Problem 7: Trigonometric Graphs
Sketch the graph of the function:
\(y = 2sin(3x – \frac{\pi}{2}) + 1\)over one complete period.
Solution:
To sketch the graph, we can analyze the function’s properties:
- Amplitude: 2
- Period: \(\frac{2\pi}{3}\)
- Phase Shift: \(\frac{\pi}{6}\) to the right
- Vertical Shift: 1 unit up
The graph will oscillate between 1-2 and 1+2, with a period of \(\frac{2\pi}{3}\). It will be shifted \(\frac{\pi}{6}\) units to the right.
Opens in a new window www.youtube.com
graph of y = 2sin(3x π/2) + 1
Problem 8: Inverse Trigonometric Functions
Find the exact value of:
\(arcsin(sin(\frac{5\pi}{6}))\)Solution:
First, we find the value of \(sin(\frac{5\pi}{6})\):
\(sin(\frac{5\pi}{6}) = \frac{1}{2}\)So, we need to find the angle whose sine is \(\frac{1}{2}\). The principal value of \(arcsin(\frac{1}{2})\) is \(\frac{\pi}{6}\).
However, we need to consider the range of the arcsine function, which is \([-\frac{\pi}{2}, \frac{\pi}{2}]\). Since \(\frac{5\pi}{6}\) is in the second quadrant, its sine value is positive. To find the angle in the first quadrant with the same sine value, we can use the reference angle:
\(\pi – \frac{5\pi}{6} = \frac{\pi}{6}\)Therefore,
\(arcsin(sin(\frac{5\pi}{6})) = \frac{\pi}{6}\)Problem 9: Applications of Trigonometry
Problem: A 10-meter ladder leans against a wall. If the angle between the ladder and the ground is 60 degrees, how high up the wall does the ladder reach?
Solution:
Let’s denote the height the ladder reaches on the wall as h
. We can use the sine function to relate the angle, the hypotenuse (ladder length), and the opposite side (height):
We know that \(sin(60°) = \frac{\sqrt{3}}{2}\). So,
\(\frac{\sqrt{3}}{2} = \frac{h}{10}\)Solving for h
, we get:
Therefore, the ladder reaches \(5\sqrt{3}\) meters up the wall.
Problem 10: Proofs by Mathematical Induction
Prove that:
\(sin(x) + sin(3x) + … + sin((2n-1)x) = \frac{sin^2(nx)}{sin(x)}\)for all positive integers n
.
Proof (By Mathematical Induction):
Base Case (n = 1): For n = 1, the left-hand side (LHS) becomes:
\(sin(x)\)The right-hand side (RHS) becomes:
\(\frac{sin^2(x)}{sin(x)} = sin(x)\)So, the base case holds.
Inductive Step: Assume the formula holds for n = k:
\(sin(x) + sin(3x) + … + sin((2k-1)x) = \frac{sin^2(kx)}{sin(x)}\)We want to prove that it also holds for n = k+1:
\(sin(x) + sin(3x) + … + sin((2k-1)x) + sin((2(k+1)-1)x) = \frac{sin^2((k+1)x)}{sin(x)}\)Using the inductive hypothesis, we can rewrite the left-hand side:
\(\frac{sin^2(kx)}{sin(x)} + sin((2k+1)x)\)Now, we need to manipulate this expression to get the desired form. We can use the product-to-sum formula:
\(sin(A) + sin(B) = 2sin(\frac{A+B}{2})cos(\frac{A-B}{2})\)Applying this to the last two terms, we get:
\(\frac{sin^2(kx)}{sin(x)} + 2sin(kx+x)cos(kx-x)\) \(= \frac{sin^2(kx)}{sin(x)} + 2sin(kx)cos(kx)\)Factor out \(sin(kx)\):
\(= \frac{sin(kx)[sin(kx) + 2cos(kx)sin(x)]}{sin(x)}\)Now, use the double-angle formula for sine:
\(sin(2A) = 2sin(A)cos(A)\)Applying this to the numerator, we get:
\(= \frac{sin(kx)[sin(kx) + sin(2x)]}{sin(x)}\)Using the sum-to-product formula again, we can combine the terms in the numerator:
\(= \frac{sin(kx)[2sin(\frac{kx+2x}{2})cos(\frac{kx-2x}{2})]}{sin(x)}\) \(= \frac{2sin(kx)sin((k+1)x)cos((k-1)x)}{sin(x)}\)Using the double-angle formula for sine again:
\(= \frac{sin^2((k+1)x)}{sin(x)}\)Thus, the formula holds for n = k+1.
2nd Section (Solutions below)
1. Express each of the following as a single trigonometric ratio.
a) \(sin(x)cos(4x) + cos(x)sin(4x)\)
b) \(cos(3x)cos(x) + sin(3x)sin(x)\)
c) \(\frac{tan(2x) + tan(3x)}{1 – tan(2x)tan(3x)}\)
d) \(2sin(\frac{x}{2})cos(\frac{x}{2})\)
e) \(cos^2(4x) – sin^2(4x)\)
f) \(\frac{1 – tan^2(\frac{x}{2})}{1 + tan^2(\frac{x}{2})}\)
g) \(2 – 4sin^2(\frac{x}{12})\)
h) \(\frac{2tan(\frac{x}{2})}{1 – tan^2(\frac{x}{2})}\)
2. Rewrite each expression as a single ratio and then evaluate the ratio.
a) \(\frac{1 – sin^2(\frac{\pi}{2})}{1 – cos^2(\frac{\pi}{2})}\)
b) \(2cos^2(\frac{\pi}{12}) – 1\)
c) \(\frac{2tan(\frac{\pi}{8})}{1 – tan^2(\frac{\pi}{8})}\)
3. Use an appropriate compound angle formula to express as a single trigonometric function, and then determine an exact value for each.
a) \(sin(\frac{\pi}{4})cos(\frac{\pi}{12}) – cos(\frac{\pi}{4})sin(\frac{\pi}{12})\)
b) \(sin(\frac{3\pi}{5})cos(\frac{\pi}{15}) + cos(\frac{3\pi}{5})sin(\frac{\pi}{15})\)
c) \(cos(\frac{10\pi}{9})cos(\frac{5\pi}{18}) + sin(\frac{10\pi}{9})sin(\frac{5\pi}{18})\)
d) \(cos(\frac{\pi}{4})cos(\frac{\pi}{12}) – sin(\frac{\pi}{4})sin(\frac{\pi}{12})\)
4. Use an appropriate compound angle formula to determine an exact value for each.
a) \(sin(\frac{17\pi}{12})\)
b) \(cos(\frac{13\pi}{12})\)
c) \(tan(\frac{5\pi}{12})\)
5. If \(sin(\alpha) = \frac{3}{7}\) and \(cos(\beta) = \frac{3}{5}\) where \(0 \leq \alpha \leq \frac{\pi}{2}\) and \(0 \leq \beta \leq \frac{\pi}{2}\), determine:
a) \(sin(\alpha + \beta)\)
b) \(cos(2\alpha)\)
6. If \(sin(x) = \frac{12}{13}\) and \(\frac{\pi}{2} \leq x \leq \pi\), find \(sin(2x)\) and \(tan(2x)\).
7. Angle θ lies in the second quadrant and \(cos(\theta) = -\frac{3}{5}\).
a) Determine the exact value for \(sin(2\theta)\), \(cos(2\theta)\), and \(tan(2\theta)\).
b) Determine an approximate measure for θ in radians. Round to the nearest hundredth of a radian.
8. If angle θ is an acute angle such that \(cos(\theta) = \frac{2}{3}\), determine the exact value of \(cos(4\theta)\).
Problem 1: Expressing as a Single Trigonometric Ratio
Part a)
\(sin(x)cos(4x) + cos(x)sin(4x)\) This expression directly matches the sine of a sum formula: \(sin(A+B) = sin(A)cos(B) + cos(A)sin(B)\)Therefore, the expression simplifies to:
\(sin(x + 4x) = sin(5x)\)Part b)
\(cos(3x)cos(x) + sin(3x)sin(x)\)This expression matches the cosine of a difference formula:
\(cos(A-B) = cos(A)cos(B) + sin(A)sin(B)\)Therefore, the expression simplifies to:
\(cos(3x – x) = cos(2x)\)Part c)
\(\frac{tan(2x) + tan(3x)}{1 – tan(2x)tan(3x)}\)This expression matches the tangent of a sum formula:
\(tan(A+B) = \frac{tan(A) + tan(B)}{1 – tan(A)tan(B)}\)Therefore, the expression simplifies to:
\(tan(2x + 3x) = tan(5x)\)Part d)
\(2sin(\frac{x}{2})cos(\frac{x}{2})\)This expression matches the double-angle formula for sine:
\(sin(2A) = 2sin(A)cos(A)\)Therefore, the expression simplifies to:
\(sin(2 * \frac{x}{2}) = sin(x)\)Part e)
\(cos^2(4x) – sin^2(4x)\)This expression matches the double-angle formula for cosine:
\(cos(2A) = cos^2(A) – sin^2(A)\)Therefore, the expression simplifies to:
\(cos(2 * 4x) = cos(8x)\)Part f)
\(\frac{1 – tan^2(\frac{x}{2})}{1 + tan^2(\frac{x}{2})}\)This expression matches the formula for cosine of a double angle in terms of tangent:
\(cos(2A) = \frac{1 – tan^2(A)}{1 + tan^2(A)}\)Therefore, the expression simplifies to:
\(cos(2 * \frac{x}{2}) = cos(x)\)Part g)
\(2 – 4sin^2(\frac{x}{12})\)We can factor out a 2:
\(2(1 – 2sin^2(\frac{x}{12}))\)This expression matches the double-angle formula for cosine in terms of sine:
\(cos(2A) = 1 – 2sin^2(A)\)Therefore, the expression simplifies to:
\(2cos(2 * \frac{x}{12}) = 2cos(\frac{x}{6})\)Part h)
\(\frac{2tan(\frac{x}{2})}{1 – tan^2(\frac{x}{2})}\)This expression matches the formula for tangent of a double angle in terms of tangent:
\(tan(2A) = \frac{2tan(A)}{1 – tan^2(A)}\)Therefore, the expression simplifies to:
\(tan(2 * \frac{x}{2}) = tan(x)\)Problem 2: Rewrite and Evaluate
Part a)
\(\frac{1 – sin^2(\frac{\pi}{2})}{1 – cos^2(\frac{\pi}{2})}\)First, we can simplify the numerator and denominator using the Pythagorean identity:
\(sin^2(x) + cos^2(x) = 1\)So, the expression becomes:
\(\frac{cos^2(\frac{\pi}{2})}{sin^2(\frac{\pi}{2})}\)Evaluating the trigonometric functions at \(\frac{\pi}{2}\):
\(\frac{0^2}{1^2} = 0\)Therefore, the expression evaluates to 0.
Part b)
\(2cos^2(\frac{\pi}{12}) – 1\)This expression matches the double-angle formula for cosine:
\(cos(2A) = 2cos^2(A) – 1\)So, we can rewrite it as:
\(cos(2 * \frac{\pi}{12}) = cos(\frac{\pi}{6})\)Evaluating \(cos(\frac{\pi}{6})\), we get:
\(\frac{\sqrt{3}}{2}\)Therefore, the expression evaluates to \(\frac{\sqrt{3}}{2}\).
Note: To evaluate trigonometric functions of angles like \(\frac{\pi}{12}\), you might need to use half-angle formulas or other trigonometric identities. However, for this specific problem, we could directly evaluate it using a calculator or trigonometric tables.
Problem 3: Compound Angle Formula and Exact Values
Part a)
\(sin(\frac{\pi}{4})cos(\frac{\pi}{12}) – cos(\frac{\pi}{4})sin(\frac{\pi}{12})\)This expression matches the sine of a difference formula:
\(sin(A – B) = sin(A)cos(B) – cos(A)sin(B)\)Therefore, the expression simplifies to:
\(sin(\frac{\pi}{4} – \frac{\pi}{12}) = sin(\frac{\pi}{6})\)Evaluating \(sin(\frac{\pi}{6})\), we get:
\(\frac{1}{2}\)So, the exact value of the expression is \(\frac{1}{2}\).
Problem 3 (Continued)
Part b)
\(sin(\frac{3\pi}{5})cos(\frac{\pi}{15}) + cos(\frac{3\pi}{5})sin(\frac{\pi}{15})\)This expression matches the sine of a sum formula:
\(sin(A + B) = sin(A)cos(B) + cos(A)sin(B)\)Therefore, the expression simplifies to:
\(sin(\frac{3\pi}{5} + \frac{\pi}{15}) = sin(\frac{10\pi}{15}) = sin(\frac{2\pi}{3})\)Evaluating \(sin(\frac{2\pi}{3})\), we get:
\(\frac{\sqrt{3}}{2}\)So, the exact value of the expression is \(\frac{\sqrt{3}}{2}\).
Part c)
\(cos(\frac{10\pi}{9})cos(\frac{5\pi}{18}) + sin(\frac{10\pi}{9})sin(\frac{5\pi}{18})\)This expression matches the cosine of a difference formula:
\(cos(A – B) = cos(A)cos(B) + sin(A)sin(B)\)Therefore, the expression simplifies to:
\(cos(\frac{10\pi}{9} – \frac{5\pi}{18}) = cos(\frac{15\pi}{18}) = cos(\frac{5\pi}{6})\)Evaluating \(cos(\frac{5\pi}{6})\), we get:
\(-\frac{\sqrt{3}}{2}\)So, the exact value of the expression is \(-\frac{\sqrt{3}}{2}\).
Part d)
\(cos(\frac{\pi}{4})cos(\frac{\pi}{12}) – sin(\frac{\pi}{4})sin(\frac{\pi}{12})\)This expression matches the cosine of a sum formula:
\(cos(A + B) = cos(A)cos(B) – sin(A)sin(B)\)Therefore, the expression simplifies to:
\(cos(\frac{\pi}{4} + \frac{\pi}{12}) = cos(\frac{\pi}{3})\)Evaluating \(cos(\frac{\pi}{3})\), we get:
\(\frac{1}{2}\)So, the exact value of the expression is \(\frac{1}{2}\).
Problem 4: Using Compound Angle Formulas
Part a) Find the exact value of:
\(sin(\frac{17\pi}{12})\)We can express \(\frac{17\pi}{12}\) as the sum of two angles whose sine and cosine values we know:
\(\frac{17\pi}{12} = \frac{8\pi}{12} + \frac{9\pi}{12} = \frac{2\pi}{3} + \frac{3\pi}{4}\)Now, we can use the sine sum formula:
\(sin(A + B) = sin(A)cos(B) + cos(A)sin(B)\)Therefore,
\(sin(\frac{17\pi}{12}) = sin(\frac{2\pi}{3} + \frac{3\pi}{4})\) \(= sin(\frac{2\pi}{3})cos(\frac{3\pi}{4}) + cos(\frac{2\pi}{3})sin(\frac{3\pi}{4})\)Evaluating the trigonometric functions, we get:
\(= \frac{\sqrt{3}}{2} \cdot (-\frac{\sqrt{2}}{2}) + (-\frac{1}{2}) \cdot \frac{\sqrt{2}}{2}\) \(= -\frac{\sqrt{6} + \sqrt{2}}{4}\)Part b) Find the exact value of:
\(cos(\frac{13\pi}{12})\)We can express \(\frac{13\pi}{12}\) as the sum of two angles:
\(\frac{13\pi}{12} = \frac{8\pi}{12} + \frac{5\pi}{12} = \frac{2\pi}{3} + \frac{5\pi}{12}\)Using the cosine sum formula:
\(cos(A + B) = cos(A)cos(B) – sin(A)sin(B)\)We get:
\(cos(\frac{13\pi}{12}) = cos(\frac{2\pi}{3} + \frac{5\pi}{12})\) \(= cos(\frac{2\pi}{3})cos(\frac{5\pi}{12}) – sin(\frac{2\pi}{3})sin(\frac{5\pi}{12})\)To evaluate this, you might need to use half-angle or other trigonometric identities, or a calculator.
Part c) Find the exact value of:
\(tan(\frac{5\pi}{12})\)We can express \(\frac{5\pi}{12}\) as the difference of two angles:
\(\frac{5\pi}{12} = \frac{3\pi}{4} – \frac{\pi}{3}\)Using the tangent difference formula:
\(tan(A – B) = \frac{tan(A) – tan(B)}{1 + tan(A)tan(B)}\)We get:
\(tan(\frac{5\pi}{12}) = tan(\frac{3\pi}{4} – \frac{\pi}{3})\) \(= \frac{tan(\frac{3\pi}{4}) – tan(\frac{\pi}{3})}{1 + tan(\frac{3\pi}{4})tan(\frac{\pi}{3})}\)Now, evaluate the tangent values and simplify the expression.
Problem 5: Trigonometric Ratios and Identities
Given:
- \(sin(\alpha) = \frac{3}{7}\) and \(0 \leq \alpha \leq \frac{\pi}{2}\)
- \(cos(\beta) = \frac{3}{5}\) and \(0 \leq \beta \leq \frac{\pi}{2}\)
To find: a) \(sin(\alpha + \beta)\) b) \(cos(2\alpha)\)
Solution:
Part a: To find \(sin(\alpha + \beta)\), we can use the sine sum formula:
\(sin(\alpha + \beta) = sin(\alpha)cos(\beta) + cos(\alpha)sin(\beta)\)First, we need to find \(cos(\alpha)\) and \(sin(\beta)\) using the Pythagorean identity:
\(sin^2(\alpha) + cos^2(\alpha) = 1\) \(cos^2(\alpha) = 1 – sin^2(\alpha) = 1 – (\frac{3}{7})^2 = \frac{40}{49}\) \(cos(\alpha) = \pm \frac{\sqrt{40}}{7}\)Since \(\alpha\) is in the first quadrant, \(cos(\alpha)\) is positive. So, \(cos(\alpha) = \frac{2\sqrt{10}}{7}\).
Similarly, for \(\beta\):
\(sin^2(\beta) + cos^2(\beta) = 1\) \(sin^2(\beta) = 1 – cos^2(\beta) = 1 – (\frac{3}{5})^2 = \frac{16}{25}\) \(sin(\beta) = \pm \frac{4}{5}\)Since \(\beta\) is in the first quadrant, \(sin(\beta)\) is positive. So, \(sin(\beta) = \frac{4}{5}\).
Now, we can substitute these values into the sine sum formula:
\(sin(\alpha + \beta) = (\frac{3}{7})(\frac{3}{5}) + (\frac{2\sqrt{10}}{7})(\frac{4}{5})\) \(= \frac{9}{35} + \frac{8\sqrt{10}}{35}\)Part b: To find \(cos(2\alpha)\), we can use the double-angle formula for cosine:
\(cos(2\alpha) = cos^2(\alpha) – sin^2(\alpha)\)We already found \(cos(\alpha) = \frac{2\sqrt{10}}{7}\) and \(sin(\alpha) = \frac{3}{7}\). Substituting these values:
\(cos(2\alpha) = (\frac{2\sqrt{10}}{7})^2 – (\frac{3}{7})^2\) \(= \frac{40}{49} – \frac{9}{49}\) \(= \frac{31}{49}\)Problem 6: Trigonometric Ratios and Double Angle Formulas
Given:
- \(sin(x) = \frac{12}{13}\)
- \(\frac{\pi}{2} \leq x \leq \pi\)
To find:
- \(sin(2x)\)
- \(tan(2x)\)
Solution:
Step 1: Find cos(x): Since \(x\) is in the second quadrant, \(cos(x)\) will be negative. Using the Pythagorean identity:
\(cos^2(x) = 1 – sin^2(x) = 1 – (\frac{12}{13})^2 = \frac{25}{169}\)So, \(cos(x) = -\frac{5}{13}\)
Step 2: Use the double-angle formulas:
- For sin(2x):
For tan(2x): We can use the formula:
\(tan(2x) = \frac{2tan(x)}{1 – tan^2(x)}\)First, find \(tan(x)\):
\(tan(x) = \frac{sin(x)}{cos(x)} = \frac{\frac{12}{13}}{-\frac{5}{13}} = -\frac{12}{5}\)Now, substitute this value into the formula for \(tan(2x)\):
\(tan(2x) = \frac{2(-\frac{12}{5})}{1 – (-\frac{12}{5})^2} = \frac{-\frac{24}{5}}{1 – \frac{144}{25}} = \frac{-\frac{24}{5}}{-\frac{119}{25}} = \frac{120}{119}\)Therefore, \(sin(2x) = -\frac{120}{169}\) and \(tan(2x) = \frac{120}{119}\).
Problem 7: Trigonometric Ratios and Double Angle Formulas
Given:
- \(cos(\theta) = -\frac{3}{5}\)
- θ lies in the second quadrant
To find: a) \(sin(2\theta)\), \(cos(2\theta)\), and \(tan(2\theta)\) b) Approximate value of θ in radians.
Solution:
Part a:
First, we need to find \(sin(\theta)\). Since θ is in the second quadrant, \(sin(\theta)\) will be positive. Using the Pythagorean identity:
\(sin^2(\theta) + cos^2(\theta) = 1\) \(sin^2(\theta) = 1 – cos^2(\theta) = 1 – (-\frac{3}{5})^2 = \frac{16}{25}\) \(sin(\theta) = \frac{4}{5}\)Now, we can use the double-angle formulas:
- For sin(2θ):
For cos(2θ):
\(cos(2\theta) = cos^2(\theta) – sin^2(\theta) = (-\frac{3}{5})^2 – (\frac{4}{5})^2 = -\frac{7}{25}\)For tan(2θ):
\(tan(2\theta) = \frac{sin(2\theta)}{cos(2\theta)} = \frac{-\frac{24}{25}}{-\frac{7}{25}} = \frac{24}{7}\)Part b:
To find the approximate value of θ, we can use the inverse cosine function:
\(\theta = arccos(-\frac{3}{5})\)Using a calculator, we find: \(\theta ≈ 2.21\) radians (rounded to the nearest hundredth)
Therefore, the approximate value of θ is 2.21 radians.
Problem 8: Acute Angle and Cosine
Given:
- θ is an acute angle
- \(cos(\theta) = \frac{2}{3}\)
To find:
- The exact value of \(cos(4\theta)\)
Solution:
We can use the double-angle formula for cosine to find \(cos(2\theta)\):
\(cos(2\theta) = 2cos^2(\theta) – 1 = 2(\frac{2}{3})^2 – 1 = -\frac{1}{9}\)Now, we can use the double-angle formula again to find \(cos(4\theta)\):
\(cos(4\theta) = 2cos^2(2\theta) – 1 = 2(-\frac{1}{9})^2 – 1 = -\frac{77}{81}\)Therefore, the exact value of
\(cos(4\theta)\) is \(-\frac{77}{81}\).Related Private Tutoring Services in Canada
- 101 Challenging SAT Math Questions You Need To Master
- Chemistry
- Oshawa ON In-Home & Online Math Tutoring
- Radium Hot Springs BC In-Home & Online Math Tutoring
- MCAT Physics - Mechanics Questions - Answers and…
- Chemistry Gas Law Questions - Answers + Explanations Bundle
- Math
- Math Exam Test Bank Questions Ontario Canada
- Breaking Down The SAT: How SAT Tutoring Empowers…
- WRITING
- Reading
- Aldersyde AB In-Home & Online Math Tutoring
- How To Tutor: What Makes Effective Tutoring?
- White Rock BC In-Home & Online Math Tutoring
- Physics
- Crossfield AB In-Home & Online Math Tutoring
- Bradford West Gwillimbury ON In-Home & Online Math Tutoring
- Guelph ON In-Home & Online Math Tutoring
- Cochrane AB In-Home & Online Math Tutoring
- Baden ON In-Home & Online Math Tutoring
- East Luther Grand Valley ON In-Home & Online Math Tutoring
- Embrun ON In-Home & Online Math Tutoring
- Okotoks AB Private SSAT Tutoring & Test Prep
- General Stoichiometry Problems with Answers and…
- Prince Edward ON In-Home & Online Math Tutoring
- Port Moody BC In-Home & Online Math Tutoring
- East Luther Grand Valley ON In-Home & Online Science…
- Elora ON In-Home & Online Math Tutoring
- Science Exam Test Bank Questions Ontario Canada
- A Top TOEFL And IELTS Study Plan for ESL Students
- Carstairs AB In-Home & Online Math Tutoring
- Gay-Lussac's Law, Charles Law 13 Questions + Answers…
- Dartmouth NS In-Home & Online Math Tutoring
- Shawnigan Lake BC In-Home & Online Math Tutoring
- Brossard QC Private SAT Tutoring & Test Prep
- Nisku AB In-Home & Online Math Tutoring
- Airdrie AB In-Home & Online Math Tutoring
- St. Catharines ON In-Home & Online Math Tutoring
- Bowmanville ON In-Home & Online Math Tutoring
- Haldimand County ON In-Home & Online Math Tutoring
- Fraser Valley E BC In-Home & Online Math Tutoring
- Lac-Supérieur QC In-Home & Online Math Tutoring
- Mount Uniacke NS Private SSAT Tutoring & Test Prep
- Vancouver BC In-Home & Online Math Tutoring
- Elmira ON In-Home & Online Math Tutoring
- Vaudreuil-Soulanges Regional County Municipality QC…
- Mitchell ON In-Home & Online Math Tutoring
- Campbellford ON In-Home & Online Math Tutoring
- Haldimand ON In-Home & Online Math Tutoring
- Brantford ON In-Home & Online Math Tutoring