Gay-Lussac’s Law, Charles Law 13 Questions + Answers + Explanations

MCAT Chemistry (Grade 11 Chemistry) Style Questions

Question 1: What will be the pressure of the gas at 200 K if the volume does not change?

Given:

  • Initial pressure: \(P_1 = 80.0 , \text{mmHg}\)
  • Initial temperature: \(T_1 = 700 , \text{K}\)
  • Final temperature: \(T_2 = 200 , \text{K}\)
  • Final pressure: \(P_2 = ?\)

Solution:

This is an application of Gay-Lussac’s Law, which states:

\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)

Rearranging to solve for \(P_2\):

\(P_2 = P_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(P_2 = 80.0 \cdot \frac{200}{700}\)
\(P_2 = 80.0 \cdot 0.2857\) \(P_2 = 22.9 , \text{mmHg}\)

Answer: The final pressure is 22.9 mmHg.


Question 2: What is the temperature if the pressure of argon gas rises to 750 mmHg?

Given:

  • Initial pressure: \(P_1 = 100.0 , \text{mmHg}\)
  • Initial temperature: \(T_1 = 327^\circ \text{C} = 600 , \text{K}\)
  • Final pressure: \(P_2 = 750 , \text{mmHg}\)
  • Final temperature: \(T_2 = ?\)

Solution:

Using Gay-Lussac’s Law:

\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)

Rearranging to solve for \(T_2\):

\(T_2 = T_1 \cdot \frac{P_2}{P_1}\)

Substitute the given values:
\(T_2 = 600 \cdot \frac{750}{100.0}\)
\(T_2 = 600 \cdot 7.5\) \(T_2 = 4500 , \text{K}\)

To convert to Celsius:
\(T_2 = 4500 – 273.15\) \(T_2 = 4226.85^\circ \text{C}\)

Answer: The final temperature is 4500 K or 4227ยฐC.


Question 3: What is the new pressure in the car tire?

Given:

  • Initial pressure: \(P_1 = 2.0 , \text{atm}\)
  • Initial temperature: \(T_1 = 27^\circ\text{C} = 300 , \text{K}\)
  • Final temperature: \(T_2 = 35^\circ\text{C} = 308 , \text{K}\)
  • Final pressure: \(P_2 = ?\)

Solution:

Using Gay-Lussac’s Law:

\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)

Rearranging to solve for \(P_2\):

\(P_2 = P_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(P_2 = 2.0 \cdot \frac{308}{300}\)
\(P_2 = 2.0 \cdot 1.0267\) \(P_2 = 2.1 , \text{atm}\)

Answer: The new pressure in the tire is 2.1 atm.


Question 4: Will the glass Christmas ornament burst?

Given:

  • Initial pressure: \(P_1 = 1.01 , \text{atm}\)
  • Initial temperature: \(T_1 = 25^\circ\text{C} = 298.15 , \text{K}\)
  • Final temperature: \(T_2 = 250^\circ\text{C} = 523.15 , \text{K}\)
  • Final pressure: \(P_2 = ?\)
  • Maximum pressure before bursting: \(P_{\text{max}} = 4.30 , \text{atm}\)

Solution:

Using Gay-Lussac’s Law:

\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)

Rearranging to solve for \(P_2\):

\(P_2 = P_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(P_2 = 1.01 \cdot \frac{523.15}{298.15}\)
\(P_2 = 1.01 \cdot 1.7535\) \(P_2 = 1.77 , \text{atm}\)

Since \(P_2 = 1.77 , \text{atm}\) is less than \(P_{\text{max}} = 4.30 , \text{atm}\), the ornament will not burst.

Answer: The final pressure is 1.77 atm, so the ornament will not burst.


Question 5: What will be the pressure in the spray can when heated?

Given:

  • Initial pressure: \(P_1 = 1.2 , \text{atm}\)
  • Initial temperature: \(T_1 = 24^\circ\text{C} = 297.15 , \text{K}\)
  • Final temperature: \(T_2 = 485^\circ\text{C} = 758.15 , \text{K}\)
  • Final pressure: \(P_2 = ?\)

Solution:

Using Gay-Lussac’s Law:

\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)

Rearranging to solve for \(P_2\):

\(P_2 = P_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(P_2 = 1.2 \cdot \frac{758.15}{297.15}\)
\(P_2 = 1.2 \cdot 2.551\) \(P_2 = 3.1 , \text{atm}\)

Answer: The pressure inside the can will be 3.1 atm.

Here are detailed step-by-step solutions for each question:


Question 6: What will be the volume of argon gas at 27ยฐC if the pressure does not change?

Given:

  • Initial volume: \(V_1 = 7.5 , \text{L}\)
  • Initial temperature: \(T_1 = 327^\circ \text{C} = 600 , \text{K}\)
  • Final temperature: \(T_2 = 27^\circ \text{C} = 300 , \text{K}\)
  • Final volume: \(V_2 = ?\)

Solution:

This is an application of Charles’s Law, which states:

\(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)

Rearranging to solve for \(V_2\):

\(V_2 = V_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(V_2 = 7.5 \cdot \frac{300}{600}\)
\(V_2 = 7.5 \cdot 0.5\) \(V_2 = 3.8 , \text{L}\)

Answer: The final volume is 3.8 L.


Question 7: At what temperature will the volume of helium gas increase to 15 L?

Given:

  • Initial volume: \(V_1 = 5.0 , \text{L}\)
  • Initial temperature: \(T_1 = 298 , \text{K}\)
  • Final volume: \(V_2 = 15 , \text{L}\)
  • Final temperature: \(T_2 = ?\)

Solution:

Using Charles’s Law:

\(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)

Rearranging to solve for \(T_2\):

\(T_2 = T_1 \cdot \frac{V_2}{V_1}\)

Substitute the given values:
\(T_2 = 298 \cdot \frac{15}{5.0}\)
\(T_2 = 298 \cdot 3\) \(T_2 = 894 , \text{K}\)

Convert to Celsius:
\(T_2 = 894 – 273.15\) \(T_2 = 620.85^\circ \text{C}\)

Answer: The final temperature is approximately 621ยฐC.


Question 8: What is the new volume of air warmed from -50ยฐC to 120ยฐC?

Given:

  • Initial volume: \(V_1 = 12 , \text{L}\)
  • Initial temperature: \(T_1 = -50^\circ \text{C} = 223.15 , \text{K}\)
  • Final temperature: \(T_2 = 120^\circ \text{C} = 393.15 , \text{K}\)
  • Final volume: \(V_2 = ?\)

Solution:

Using Charles’s Law:

\(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)

Rearranging to solve for \(V_2\):

\(V_2 = V_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(V_2 = 12 \cdot \frac{393.15}{223.15}\)
\(V_2 = 12 \cdot 1.762\) \(V_2 = 21.1 , \text{L}\)

Answer: The final volume is approximately 21 L.


Question 9: At what temperature will a gas have half the volume of its room temperature volume?

Given:

  • Initial temperature: \(T_1 = 24.0^\circ \text{C} = 297.15 , \text{K}\)
  • Final volume: \(V_2 = 0.5 , V_1\)
  • Final temperature: \(T_2 = ?\)

Solution:

Using Charles’s Law:

\(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)

Rearranging to solve for \(T_2\):

\(T_2 = T_1 \cdot \frac{V_2}{V_1}\)

Substitute the given values:
\(T_2 = 297.15 \cdot \frac{0.5}{1}\)
\(T_2 = 297.15 \cdot 0.5\) \(T_2 = 148.58 , \text{K}\)

Convert to Celsius:
\(T_2 = 148.58 – 273.15\) \(T_2 = -124.57^\circ \text{C}\)

Answer: The gas will have half the volume at approximately -125ยฐC.


Question 10: Predict the final volume of COโ‚‚ heated from 25ยฐC to 190ยฐC.

Given:

  • Initial volume: \(V_1 = 0.10 , \text{L}\)
  • Initial temperature: \(T_1 = 25^\circ \text{C} = 298.15 , \text{K}\)
  • Final temperature: \(T_2 = 190^\circ \text{C} = 463.15 , \text{K}\)
  • Final volume: \(V_2 = ?\)

Solution:

Using Charles’s Law:

\(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)

Rearranging to solve for \(V_2\):

\(V_2 = V_1 \cdot \frac{T_2}{T_1}\)

Substitute the given values:
\(V_2 = 0.10 \cdot \frac{463.15}{298.15}\)
\(V_2 = 0.10 \cdot 1.553\) \(V_2 = 0.155 , \text{L}\)

Answer: The final volume is approximately 0.16 L.


Question 11: What was the initial volume of gas at 50ยฐC?

Given:

  • Final volume: \(V_2 = 2.00 , \text{L}\)
  • Final temperature: \(T_2 = 25.0^\circ \text{C} = 298.15 , \text{K}\)
  • Initial temperature: \(T_1 = 50^\circ \text{C} = 323.15 , \text{K}\)
  • Initial volume: \(V_1 = ?\)

Solution:

Using Charles’s Law:

\(\frac{V_1}{T_1} = \frac{V_2}{T_2}\)

Rearranging to solve for \(V_1\):

\(V_1 = V_2 \cdot \frac{T_1}{T_2}\)

Substitute the given values:
\(V_1 = 2.00 \cdot \frac{323.15}{298.15}\)
\(V_1 = 2.00 \cdot 1.084\) \(V_1 = 2.17 , \text{L}\)

Answer: The initial volume was 2.17 L.


Question 12: To what temperature must hydrogen gas be heated?

Given:

  • Initial volume: \(V_1 = 45.0 , \text{L}\)
  • Initial temperature: \(T_1 = 290 , \text{K}\)
  • Final volume:
\(V_2 = 65.0 , \

text{L}\)

  • Final temperature: \(T_2 = ?\)

Solution:

Using Charles’s Law:

\(T_2 = T_1 \cdot \frac{V_2}{V_1}\)

Substitute the given values:
\(T_2 = 290 \cdot \frac{65.0}{45.0}\)
\(T_2 = 290 \cdot 1.444\) \(T_2 = 419 , \text{K}\)

Answer: The gas must be heated to 419 K.


Question 13: What was the initial temperature to achieve 146ยฐC?

Given:

  • Initial volume: \(V_1 = 45.0 , \text{L}\)
  • Final volume: \(V_2 = 65.0 , \text{L}\)
  • Final temperature: \(T_2 = 146^\circ \text{C} = 419 , \text{K}\)
  • Initial temperature: \(T_1 = ?\)

Solution:

Using Charles’s Law:

\(T_1 = T_2 \cdot \frac{V_1}{V_2}\)

Substitute the given values:
\(T_1 = 419 \cdot \frac{45.0}{65.0}\)
\(T_1 = 419 \cdot 0.692\) \(T_1 = 290 , \text{K}\)

Convert to Celsius:
\(T_1 = 290 – 273.15\) \(T_1 = 16.85^\circ \text{C}\)

Answer: The initial temperature was approximately 17ยฐC.


Expert Advice, Delivered!

Get admissions tips and advice from the experts at tutorone.ca.

Let's set you up for success ๐ŸŽ‰

    Your Name (required)

    Your Phone Number (required)

    Your Email (required)

    Can we communicate over WhatsApp Messenger? (required)

    Your Message