SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Math Randomized Questions - 3 Full Math Practice Tests - Answers and Detailed Explanations at the END

SAT Math Randomized Questions - 3 Full Math Practice Tests - Answers and Detailed Explanations at the END

SAT Math Randomized Questions - 3 Full Math Practice Tests - Answers and Detailed Explanations at the END

1 / 44

Given the system of equations:

\( 10x + 6y = 120 \)
\( 2x + y = 15 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

2 / 44

q(t) = 600 - 10t
The function q models the amount of liquid, in liters, in a tank t minutes after it begins draining. According to the model, what is the predicted amount of liquid, in milliliters, draining from the tank every 2 hours?

3 / 44

The function \( f(x) = \frac{1}{6}(x - 10)^2 + 4 \) describes the height of a basketball above the court \( f(x) \), in feet, \( x \) seconds after it was thrown, where \(\) 0 < x < 20 [/latex]. Which of the following is the best interpretation of the vertex of the graph of [latex] y = f(x) [/latex] in the [latex] xy [/latex]-plane?

4 / 44

The function \( p(t) = 75,000 \cdot (1.02)^{t/250} \) represents the population of a certain type of bacteria \( t \) minutes after observation. How much time, in hours, does it take for this bacterial population to double?

5 / 44

A cube has a volume of 343 cubic units. What is the surface area, in square units, of the cube?

6 / 44

\(p = \frac{k}{7m + 5n}\). The given equation relates the distinct positive numbers \(p, k, m,\) and \(n\). Which equation correctly expresses \(7m + 5n\) in terms of \(p\) and \(k\)?

7 / 44

A community consists of a 3-kilometer trail and a 50-kilometer network of roads. The total number of streetlights in the community is 8,000. The equation 3𝑠 + 50𝑡 = 8,000 represents this situation. Which of the following is the best interpretation of 𝑠 in this context?

8 / 44

\(x(rx - 120) = -64.\) In the given equation, r is an integer constant. If the equation has no real solution, what is the least possible value of r?

9 / 44

\(w = \frac{g}{2p + 9q}\). The given equation relates the distinct positive numbers \(w, g, p,\) and \(q\). Which equation correctly expresses \(2p + 9q\) in terms of \(w\) and \(g\)?

10 / 44

The measure of angle X is \( \frac{\pi}{6} \) radians. The measure of angle Y is \( \frac{\pi}{3} \) radians greater than the measure of angle X. What is the measure of angle Y, in degrees?

11 / 44

In triangles ABC and DEF, which are similar, angle B corresponds to angle E, and angles A and D are right angles. If \( \sin(B) = \frac{9}{15} \), what is the value of \( \sin(E) \)?

12 / 44

For \(x > 0\), the function \(p\) is defined as follows: \(p(x)\) equals 75% of \(x\). Which of the following could describe this function?

13 / 44

What percentage of \(250\) is \(62.5\)?

14 / 44

The population of a city was 50,000 in the year 2020, and it increases by 2% per year. Which equation best represents the population \( p \) of the city after \( x \) seconds?

15 / 44

\(k(x) = 4800(0.68)^{x/6}\)

The function \(k\) models the depreciation in the value of a computer, in dollars, after \(x\) months. If the computer's value decreases each year by \(p\)% of its value from the preceding year, what is the value of \(p\)?

16 / 44

Poll results:
Candidate L - 600 votes
Candidate M - 400 votes

A poll was conducted with 1,000 voters. If 7,500 people vote in the election, by how many votes is Candidate L expected to win?

17 / 44

The function \( f \) is defined by \( f(x) = 400(0.5)^x \). What is the value of \( f(0) \)?

18 / 44

The table below gives the coordinates of two points on a line in the xy-plane:

| x | y |
|----|----|
| \(q\) | -10 |
| \(q - 9\) | -40 |

The y-intercept of the line is at \((q + 5, b)\), where \(q\) and \(b\) are constants. What is the value of \(b\)?

19 / 44

The measure of angle P is \( \frac{5\pi}{6} \) radians. The measure of angle Q is \( \frac{\pi}{4} \) radians greater than the measure of angle P. What is the measure of angle Q, in degrees?

20 / 44

Value: 12, 16, 20, 24, 28

Data set A frequency: 4, 6, 8, 6, 4

Data set B frequency: 2, 5, 10, 5, 2

Data set A and Data set B each contain 28 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

21 / 44

Given the system of equations:

\( 20x + 3y = 150 \)
\( 4x + y = 30 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

22 / 44

The table below gives the coordinates of two points on a line in the xy-plane:

| x | y |
|----|----|
| \(p\) | -7 |
| \(p + 8\) | 21 |

The y-intercept of the line is at \((p - 6, b)\), where \(p\) and \(b\) are constants. What is the value of \(b\)?

23 / 44

In similar triangles RST and UVW, angle R corresponds to angle U and angles S and V are right angles. If \( \sin(R) = \frac{40}{41} \), what is the value of \( \sin(U) \)?

24 / 44

Given the equation \( x(x + 1) - 56 = 4x(x - 7) \), what is the sum of the solutions to the given equation?

25 / 44

Given \(f(x) = 2x^2 + 8x + 6\), define the function \(g(x) = f(x + 1)\). For what value of \(x\) does \(g(x)\) reach its minimum?

26 / 44

Poll results:
Candidate P - 725 votes
Candidate Q - 275 votes

According to the poll of 1,000 voters, Candidate P received 725 votes, and Candidate Q received 275 votes. If 8,000 people vote in the election, how many more votes would Candidate P receive compared to Candidate Q?

27 / 44

In the equation \( y = x^2 - 16x + 40 \), which relates \( x \) and \( y \), for what value of \( x \) does \( y \) reach its minimum?

28 / 44

If \(f(x) = x^2 - 10x + 25\), and \(g(x) = f(x - 2)\), for what value of \(x\) does \(g(x)\) reach its minimum?

29 / 44

Value: 8, 16, 24, 32, 40

Data set A frequency: 5, 5, 10, 5, 5

Data set B frequency: 6, 8, 6, 8, 6

Data set A and Data set B each contain 30 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

30 / 44

5x + 7y = 20 + n

14y = 10x - 35

In the given system of equations, n is a constant. If the system has no solution, what is the value of n?

31 / 44

\( 10a - 3 = 10(a - 0.3) + 0 \). How many solutions does the given equation have?

32 / 44

\( 5(x + 3) = 5x + 15 \). How many solutions does the given equation have?

33 / 44

A researcher initially measures 8,000 units of a certain substance. Six hours later, the substance's quantity has increased to 64,000 units. Assuming exponential growth, the formula \( P = C(2)^{rt} \) represents the amount of substance, where \( C \) is a constant and \( P \) is the quantity after \( t \) hours. What is the value of \( r \)?

34 / 44

The function \( j \) is given by \( j(x) = 50 \cdot k^x \), where \( k \) is a positive constant. If \( j(5) = 15625 \), what is \( j(0.5) \)?

35 / 44

A garden contains a 6-square-meter vegetable patch and a 12-square-meter flower bed. The total number of plants in the garden is 216. The equation 6𝑣 + 12𝑓 = 216 represents this situation. Which of the following is the best interpretation of 𝑣 in this context?

36 / 44

A construction worker used concrete to build foundations. The function k(x) = -8x + 64 approximates the amount of concrete, in cubic feet, the worker had remaining after building x foundations. Which statement is the best interpretation of the y-intercept of the graph of y=k(x) in the xy-plane in this context?

37 / 44

\(x(qx - 64) = -20.\) In the given equation, q is an integer constant. If the equation has no real solution, what is the least possible value of q?

38 / 44

Square X has side lengths that are 50 times the side lengths of square Y. The area of square X is \( k \) times the area of square Y. What is the value of \( k \)?

39 / 44

A right triangle has legs with lengths of \( 7 , \text{cm} \) and \( 24 , \text{cm} \). If the length of the hypotenuse, in cm, can be written in the form \( \sqrt{d} \), where \( d \) is an integer, what is the value of \( d \)?

40 / 44

The exponential function \( m \) is defined by \( m(x) = 16 \cdot q^x \), where \( q \) is a positive constant. If \( m(3) = 4096 \), what is \( m(\frac{1}{4}) \)?

41 / 44

p(t) = 350 - 6t
The function p represents the volume of liquid, in ounces, in a glass t seconds after it starts spilling. According to the model, what is the predicted volume, in fluid ounces, spilling from the glass every half minute?

42 / 44

The given equation describes the relationship between the number of cats, \( x \), and the number of dogs, \( y \), that can be cared for at a pet shelter on a given day. If the shelter cares for 24 dogs on a given day, how many cats can it care for on this day?

\( 3.5x + 7y = 140 \)

43 / 44

The function \( F(x) = \frac{9}{5}(x - 180) + 5 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 3.00 kelvins, by how much did the temperature increase in degrees Fahrenheit?

44 / 44

f(x) = 8(5)^x. The function f is defined by the given equation. If g(x) = f(x + 2), which of the following equations defines the function g?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.