SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

1 / 44

The function \( q \) is defined by \( q(x) = -7x + 21 \). The graph of \( y = q(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

2 / 44

The function \( F(x) = \frac{9}{5}(x - 300) + 25 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 5.00 kelvins, by how much did the temperature increase in degrees Fahrenheit?

3 / 44

A cube has a volume of 474,552 cubic units. What is the surface area, in square units, of the cube?

4 / 44

Given \(f(x) = 2x^2 + 8x + 6\), define the function \(g(x) = f(x + 1)\). For what value of \(x\) does \(g(x)\) reach its minimum?

5 / 44

\(x(qx - 64) = -20.\) In the given equation, q is an integer constant. If the equation has no real solution, what is the least possible value of q?

6 / 44

\(g(x) = 8000(0.75)^{x/6}\)

The function \(g\) gives the value, in dollars, of a certain piece of equipment after \(x\) months of use. If the value of the equipment decreases each year by \(q\)% of its value from the preceding year, what is the value of \(q\)?

7 / 44

If \( 75 \) is \( p \% \) of \( 150 \), what is \( p \% \) of \( 75 \)?

8 / 44

Triangles \( \triangle XYZ \) and \( \triangle ABC \) are congruent, where \( X \) corresponds to \( A \), and \( Y \) and \( B \) are right angles. If the measure of angle \( Z \) is 70°, what is the measure of angle \( C \)?

9 / 44

What percentage of \(200\) is \(50\)?

10 / 44

What percentage of \(250\) is \(62.5\)?

11 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( y = \frac{1}{2}x + 5 \)
\( y = -\frac{1}{2}x + 5 \)

12 / 44

A line in the xy-plane has a slope of \( \frac{1}{3} \) and passes through the point \( (-3, 5) \). Which of the following equations represents this line?

13 / 44

In similar triangles RST and UVW, angle R corresponds to angle U and angles S and V are right angles. If \( \sin(R) = \frac{40}{41} \), what is the value of \( \sin(U) \)?

14 / 44

In the given equation, \( (2x + p)(3x^2 - 15)(5x^2 - 20x + 3p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( \frac{25}{2} \). What is the value of \( p \)?

15 / 44

In the given equation, \( (3x + p)(5x^2 - 45)(3x^2 - 16x + 6p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( \frac{20}{3} \). What is the value of \( p \)?

16 / 44

g(t) = 500 - 7t
The function g models the volume of liquid, in milliliters, in a bottle t minutes after it starts leaking. According to the model, what is the predicted volume, in liters, leaking from the bottle each hour?

17 / 44

\( 3y - 9 = 3(y - 3) \). How many solutions does the given equation have?

18 / 44

The function \( p \) is defined by \( p(x) = 3x + 9 \). The graph of \( y = p(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

19 / 44

The function \( r \) is defined by \( r(x) = 8x - 16 \). The graph of \( y = r(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

20 / 44

\(x^2 - 12x + 11 = 0.\) One solution to the given equation can be written as \(6 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

21 / 44

A right triangle has legs with lengths of \( 5 , \text{cm} \) and \( 12 , \text{cm} \). If the length of the hypotenuse, in cm, can be written in the form \( \sqrt{d} \), where \( d \) is an integer, what is the value of \( d \)?

22 / 44

A line in the xy-plane has a slope of \( -\frac{5}{6} \) and passes through the point \( (-6, 4) \). Which of the following equations represents this line?

23 / 44

The function \( F(x) = \frac{9}{5}(x - 180) + 5 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 3.00 kelvins, by how much did the temperature increase in degrees Fahrenheit?

24 / 44

f(x) = 6(10)^x. The function f is defined by the given equation. If g(x) = f(x + 1), which of the following equations defines the function g?

25 / 44

f(x) = 7(2)^x. The function f is defined by the given equation. If g(x) = f(x + 4), which of the following equations defines the function g?

26 / 44

The function \( f(x) = \frac{1}{16}(x - 5)^2 + 2 \) gives a roller coaster car's height above the ground \( f(x) \), in feet, \( x \) seconds after it started moving on a track, where \(\) 0 < x < 12 [/latex]. Which of the following is the best interpretation of the vertex of the graph of [latex] y = f(x) [/latex] in the [latex] xy [/latex]-plane?

27 / 44

The function \( f \) is defined by \( f(x) = 250(0.4)^x \). What is the value of \( f(0) \)?

28 / 44

\( 5(x + 3) = 5x + 15 \). How many solutions does the given equation have?

29 / 44

3x + 5y = 24

6x = 10y - b

In the given system of equations, b is a constant. If the system has no solution, what is the value of b?

30 / 44

For \(x > 0\), the function \(g\) is defined as follows: \(g(x)\) equals 150% of \(x\). Which of the following could describe this function?

31 / 44

One of the factors of \(3x^3 + 27x^2 + 54x\) is \(x + b\), where \(b\) is a positive constant. What is the smallest possible value of \(b\)?

32 / 44

A wildlife reserve has an area of 8,673,280 square yards. What is the area, in square miles, of this reserve? (1 mile = 1760 yards)

33 / 44

If \( 45 \) is \( p \% \) of \( 90 \), what is \( p \% \) of \( 45 \)?

34 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 5x + 4y = 16 \) and \( -10x - 8y = -32 \)

35 / 44

Starting with 5,000 bacteria, a biologist records 40,000 bacteria after five hours. If the growth follows \( P = C(2)^{rt} \), where \( P \) is the bacterial count and \( t \) is time in hours, what is the value of \( r \)?

36 / 44

4x + my = 12

2x = 5 - 3y

In the given system of equations, m is a constant. If the system has no solution, what is the value of m?

37 / 44

The given equation describes the relationship between the number of cats, \( x \), and the number of dogs, \( y \), that can be cared for at a pet shelter on a given day. If the shelter cares for 24 dogs on a given day, how many cats can it care for on this day?

\( 3.5x + 7y = 140 \)

38 / 44

A proposal for a new library was included on an election ballot. A radio show stated that 3 times as many people voted in favor of the proposal as people who voted against it. A social media post reported that 15,000 more people voted in favor of the proposal than voted against it. Based on these data, how many people voted against the proposal?

39 / 44

A community consists of a 3-kilometer trail and a 50-kilometer network of roads. The total number of streetlights in the community is 8,000. The equation 3𝑠 + 50𝑡 = 8,000 represents this situation. Which of the following is the best interpretation of 𝑠 in this context?

40 / 44

\(k(x) = 4800(0.68)^{x/6}\)

The function \(k\) models the depreciation in the value of a computer, in dollars, after \(x\) months. If the computer's value decreases each year by \(p\)% of its value from the preceding year, what is the value of \(p\)?

41 / 44

A researcher initially measures 8,000 units of a certain substance. Six hours later, the substance's quantity has increased to 64,000 units. Assuming exponential growth, the formula \( P = C(2)^{rt} \) represents the amount of substance, where \( C \) is a constant and \( P \) is the quantity after \( t \) hours. What is the value of \( r \)?

42 / 44

\(x^2 - 6x + 3 = 0.\) One solution to the given equation can be written as \(3 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

43 / 44

\( 10a - 3 = 10(a - 0.3) + 0 \). How many solutions does the given equation have?

44 / 44

In the xy-plane, the equation \( 4x^2 + 64px + 4y^2 - 32py = -256p^2 \) represents a circle. The length of the radius of the circle is np, where n and p are positive constants. What is the value of n?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.