SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

1 / 44

If \( 50 \) is \( p \% \) of \( 80 \), what is \( p \% \) of \( 50 \)?

2 / 44

Given the equation \( 2x(x - 4) + 12 = 6x(2 - x) \), what is the sum of the solutions to the given equation?

3 / 44

A small business owner budgets $2,200 to purchase candles. The owner must purchase a minimum of 200 candles to maintain the discounted pricing. If the owner pays $4.90 per candle to purchase small candles and $11.60 per candle to purchase large candles, what is the maximum number of large candles the owner can purchase to stay within the budget and maintain the discounted pricing?

4 / 44

For the function p, the value of p(x) decreases by 60% for every increase in the value of x by 1. If p(0) = 50, which equation defines p?

5 / 44

One gallon of paint will cover 200 square feet of a surface. A room has a total wall area of \(w\) square feet. Which equation represents the total amount of paint \(P\), in gallons, needed to paint the walls of the room twice?

6 / 44

The population of a certain bacteria colony is initially 1,000. The population triples every hour. Which equation represents the population \( p \) after \( x \) days?

7 / 44

The function \( g(t) = 20,000 \cdot (1.05)^{t/300} \) gives the number of cells in a population \( t \) minutes after an initial observation. How much time, in hours, does it take for the number of cells to double?

8 / 44

The equation describes the relationship between the number of hamsters, \( d \), and the number of birds, \( b \), that can be kept in a pet shop. If the shop can keep 8 birds, how many hamsters can it keep?

\( 2.5d + 3.5b = 70 \)

9 / 44

What percentage of \(250\) is \(62.5\)?

10 / 44

For \(f(x) = -3x^2 + 12x - 5\), let \(g(x) = f(x - 6)\). For what value of \(x\) does \(g(x)\) reach its maximum?

11 / 44

In the equation \( y = x^2 - 16x + 40 \), which relates \( x \) and \( y \), for what value of \( x \) does \( y \) reach its minimum?

12 / 44

Value: 10, 15, 20, 25, 30

Data set A frequency: 3, 5, 7, 9, 11

Data set B frequency: 11, 9, 7, 5, 3

Data set A and Data set B each contain 35 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

13 / 44

\(x^2 - 10x + 2 = 0.\) One solution to the given equation can be written as \(5 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

14 / 44

Triangles \( \triangle JKL \) and \( \triangle MNO \) are congruent, where \( J \) corresponds to \( M \), and \( K \) and \( N \) are right angles. The measure of angle \( L \) is 40°. What is the measure of angle \( O \)?

15 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( y = -4x + 3 \)
\( y = -4x + 3 \)

16 / 44

A cube has a volume of 729 cubic units. What is the surface area, in square units, of the cube?

17 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 7x + 2y = 15 \) and \( 3.5x + y = 8 \)

18 / 44

A researcher initially measures 8,000 units of a certain substance. Six hours later, the substance's quantity has increased to 64,000 units. Assuming exponential growth, the formula \( P = C(2)^{rt} \) represents the amount of substance, where \( C \) is a constant and \( P \) is the quantity after \( t \) hours. What is the value of \( r \)?

19 / 44

The function \( F(x) = \frac{9}{5}(x - 250) + 20 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 1.50 kelvins, by how much did the temperature increase in degrees Fahrenheit?

20 / 44

Given the equation \( x(x + 2) - 10 = 3x(x - 5) \), what is the sum of the solutions to the given equation?

21 / 44

A national park has an area of 10,240,000 square yards. What is the area, in square miles, of this park? (1 mile = 1760 yards)

22 / 44

The function \( f \) is defined by \( f(x) = 5x - 15 \). The graph of \( y = f(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

23 / 44

A line in the xy-plane has a slope of \( -2 \) and passes through the point \( (3, 7) \). Which of the following equations represents this line?

24 / 44

The function \( F(x) = \frac{9}{5}(x - 180) + 5 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 3.00 kelvins, by how much did the temperature increase in degrees Fahrenheit?

25 / 44

In similar triangles RST and UVW, angle R corresponds to angle U and angles S and V are right angles. If \( \sin(R) = \frac{40}{41} \), what is the value of \( \sin(U) \)?

26 / 44

The function \( h(t) = 45,000 \cdot (1.04)^{t/200} \) represents the number of organisms in a culture \( t \) minutes after starting. How much time, in hours, is needed for the culture's population to double?

27 / 44

One gallon of paint will cover 300 square feet of a surface. A room has a total wall area of \(w\) square feet. Which equation represents the total amount of paint \(P\), in gallons, needed to paint the walls of the room twice?

28 / 44

The function \( g \) is defined by \( g(x) = -2x + 10 \). The graph of \( y = g(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

29 / 44

A vote on a school funding bill showed that 3 times as many voters voted against the bill as those who voted in favor. It was also reported that 18,000 more voters voted against it than in favor. How many voters voted against the bill?

30 / 44

\(x = \frac{h}{3y + 8z}\). The given equation relates the distinct positive numbers \(x, h, y,\) and \(z\). Which equation correctly expresses \(3y + 8z\) in terms of \(x\) and \(h\)?

31 / 44

66x = 66x. How many solutions does the given equation have?

32 / 44

\(x(mx - 40\) = -25. In the given equation, m is an integer constant. If the equation has no real solution, what is the least possible value of m?

33 / 44

Consider the system of inequalities: \( y \geq -2x - 1 \) and \( x + 7 \geq y \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

34 / 44

The measure of angle X is \( \frac{\pi}{6} \) radians. The measure of angle Y is \( \frac{\pi}{3} \) radians greater than the measure of angle X. What is the measure of angle Y, in degrees?

35 / 44

In triangles ABC and DEF, which are similar, angle B corresponds to angle E, and angles A and D are right angles. If \( \sin(B) = \frac{9}{15} \), what is the value of \( \sin(E) \)?

36 / 44

The half-life of a radioactive substance is 3 years. The initial quantity of the substance is 5 grams. Which equation best represents the quantity \( Q \) of the substance remaining after \( x \) minutes?

37 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( y = \frac{1}{2}x + 5 \)
\( y = -\frac{1}{2}x + 5 \)

38 / 44

Triangles \( \triangle ABC \) and \( \triangle DEF \) are congruent, where \( A \) corresponds to \( D \), and \( B \) and \( E \) are right angles. If the measure of angle \( C \) is 55°, what is the measure of angle \( F \)?

39 / 44

Square M has side lengths that are 15 times the side lengths of square N. The area of square M is \( k \) times the area of square N. What is the value of \( k \)?

40 / 44

If \(\frac{x}{y} = 8\) and \(\frac{56x}{my} = 8\), what is the value of \(m\)?

41 / 44

Consider the system of inequalities: \( y \geq 2x + 3 \) and \( x + y \leq 7 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

42 / 44

In a lab experiment, a cell culture begins with 3,000 cells. Eight hours later, the cell count increases to 24,000. Using the formula \( P = C(2)^{rt} \), where \( C \) and \( r \) are constants, and \( P \) is the number of cells \( t \) hours after the initial count, find the value of \( r \).

43 / 44

A campus consists of a 5-acre sports field and a 40-acre academic zone. The total number of benches on the campus is 2,450. The equation 5𝑏 + 40𝑐 = 2,450 represents this situation. Which of the following is the best interpretation of 𝑏 in this context?

44 / 44

A cube has a volume of 27,000 cubic units. What is the surface area, in square units, of the cube?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.