SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

1 / 44

One gallon of paint will cover 150 square feet of a surface. A room has a total wall area of \(w\) square feet. Which equation represents the total amount of paint \(P\), in gallons, needed to paint the walls of the room twice?

2 / 44

\(k(x) = 4800(0.68)^{x/6}\)

The function \(k\) models the depreciation in the value of a computer, in dollars, after \(x\) months. If the computer's value decreases each year by \(p\)% of its value from the preceding year, what is the value of \(p\)?

3 / 44

A line in the xy-plane has a slope of \( \frac{7}{8} \) and passes through the point \( (4, -1) \). Which of the following equations represents this line?

4 / 44

\(m(x) = 7500(0.70)^{x/12}\)

The function \(m\) gives the value, in dollars, of a piece of laboratory equipment after \(x\) months of use. If the equipment's value decreases each year by \(q\)% of its value from the preceding year, what is the value of \(q\)?

5 / 44

The function \( j \) is given by \( j(x) = 50 \cdot k^x \), where \( k \) is a positive constant. If \( j(5) = 15625 \), what is \( j(0.5) \)?

6 / 44

Value: 5, 10, 15, 20, 25

Data set A frequency: 6, 8, 10, 8, 6

Data set B frequency: 7, 8, 9, 8, 7

Data set A and Data set B each contain 38 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

7 / 44

The function \( f \) is defined by \( f(x) = 5x - 15 \). The graph of \( y = f(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

8 / 44

One of the factors of \(5x^3 + 35x^2 + 60x\) is \(x + b\), where \(b\) is a positive constant. What is the smallest possible value of \(b\)?

9 / 44

\( 3y - 9 = 3(y - 3) \). How many solutions does the given equation have?

10 / 44

One of the factors of \(4x^3 + 32x^2 + 96x\) is \(x + b\), where \(b\) is a positive constant. What is the smallest possible value of \(b\)?

11 / 44

For \(x > 0\), the function \(p\) is defined as follows: \(p(x)\) equals 75% of \(x\). Which of the following could describe this function?

12 / 44

The table below gives the coordinates of two points on a line in the xy-plane:

| x | y |
|----|----|
| \(n\) | 12 |
| \(n - 6\) | -18 |

The y-intercept of the line is at \((n + 2, b)\), where \(n\) and \(b\) are constants. What is the value of \(b\)?

13 / 44

Consider the system of inequalities: \( y \leq 3x + 4 \) and \( y \geq -x - 5 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

14 / 44

A colony of microorganisms starts with a population of 4,000. After three hours, the population has grown to 32,000. Following the exponential growth formula \( P = C(2)^{rt} \), where \( t \) represents hours, determine the value of \( r \).

15 / 44

Starting with 5,000 bacteria, a biologist records 40,000 bacteria after five hours. If the growth follows \( P = C(2)^{rt} \), where \( P \) is the bacterial count and \( t \) is time in hours, what is the value of \( r \)?

16 / 44

Which ordered pair is a solution to the following equations:

\( y = (x - 1)(x + 2) \)
\( y = 3x - 3 \)

17 / 44

The measure of angle X is \( \frac{\pi}{6} \) radians. The measure of angle Y is \( \frac{\pi}{3} \) radians greater than the measure of angle X. What is the measure of angle Y, in degrees?

18 / 44

Consider the system of inequalities: \( y \leq -x + 4 \) and \( 2x + y \geq 1 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

19 / 44

f(x) = 7(2)^x. The function f is defined by the given equation. If g(x) = f(x + 4), which of the following equations defines the function g?

20 / 44

A small business owner budgets $2,200 to purchase candles. The owner must purchase a minimum of 200 candles to maintain the discounted pricing. If the owner pays $4.90 per candle to purchase small candles and $11.60 per candle to purchase large candles, what is the maximum number of large candles the owner can purchase to stay within the budget and maintain the discounted pricing?

21 / 44

The equation describes the relationship between the number of fish, \( a \), and the number of turtles, \( c \), that a pet shop can care for. If the shop can care for 12 turtles on a given day, how many fish can it care for?

\( 1.5a + 4.5c = 90 \)

22 / 44

The table below gives the coordinates of two points on a line in the xy-plane:

| x | y |
|----|----|
| \(p\) | -7 |
| \(p + 8\) | 21 |

The y-intercept of the line is at \((p - 6, b)\), where \(p\) and \(b\) are constants. What is the value of \(b\)?

23 / 44

If \(\frac{m}{n} = 3\) and \(\frac{18m}{pn} = 3\), what is the value of \(p\)?

24 / 44

\(x^2 - 10x + 2 = 0.\) One solution to the given equation can be written as \(5 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

25 / 44

The function \( g(t) = 20,000 \cdot (1.05)^{t/300} \) gives the number of cells in a population \( t \) minutes after an initial observation. How much time, in hours, does it take for the number of cells to double?

26 / 44

Given the equation \( x(x + 2) - 10 = 3x(x - 5) \), what is the sum of the solutions to the given equation?

27 / 44

If \(\frac{x}{y} = 8\) and \(\frac{56x}{my} = 8\), what is the value of \(m\)?

28 / 44

The function \( F(x) = \frac{9}{5}(x - 250) + 20 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 1.50 kelvins, by how much did the temperature increase in degrees Fahrenheit?

29 / 44

Value: 7, 14, 21, 28, 35

Data set A frequency: 10, 8, 6, 4, 2

Data set B frequency: 2, 4, 6, 8, 10

Data set A and Data set B each contain 30 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

30 / 44

One of the factors of \(6x^3 + 24x^2 + 30x\) is \(x + b\), where \(b\) is a positive constant. What is the smallest possible value of \(b\)?

31 / 44

7x - 4y = 8

14y = kx + 16

In the given system of equations, k is a constant. If the system has no solution, what is the value of k?

32 / 44

The function \( f \) is defined by \( f(x) = 400(0.5)^x \). What is the value of \( f(0) \)?

33 / 44

\(x^2 - 4x - 5 = 0.\) One solution to the given equation can be written as \(2 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

34 / 44

The function \( h(t) = 45,000 \cdot (1.04)^{t/200} \) represents the number of organisms in a culture \( t \) minutes after starting. How much time, in hours, is needed for the culture's population to double?

35 / 44

A national park has an area of 10,240,000 square yards. What is the area, in square miles, of this park? (1 mile = 1760 yards)

36 / 44

For the function p, the value of p(x) decreases by 60% for every increase in the value of x by 1. If p(0) = 50, which equation defines p?

37 / 44

For \(f(x) = -3x^2 + 12x - 5\), let \(g(x) = f(x - 6)\). For what value of \(x\) does \(g(x)\) reach its maximum?

38 / 44

The value of an investment is initially $10,000 and it increases by 8% every month. Which equation represents the value \( V \) of the investment after \( x \) years?

39 / 44

2x - 3y = 10 + k

5y = 6x - 3

In the given system of equations, k is a constant. If the system has no solution, what is the value of k?

40 / 44

q(t) = 600 - 10t
The function q models the amount of liquid, in liters, in a tank t minutes after it begins draining. According to the model, what is the predicted amount of liquid, in milliliters, draining from the tank every 2 hours?

41 / 44

A cube has a volume of 64,000 cubic units. What is the surface area, in square units, of the cube?

42 / 44

\(h(x) = 12000(0.82)^{x/4}\)

The function \(h\) gives the value, in dollars, of a machine after \(x\) months of operation. If the machine’s value decreases each year by \(r\)% of its value from the preceding year, what is the value of \(r\)?

43 / 44

A vote on a school funding bill showed that 3 times as many voters voted against the bill as those who voted in favor. It was also reported that 18,000 more voters voted against it than in favor. How many voters voted against the bill?

44 / 44

Triangles \( \triangle ABC \) and \( \triangle DEF \) are congruent, where \( A \) corresponds to \( D \), and \( B \) and \( E \) are right angles. If the measure of angle \( C \) is 55°, what is the measure of angle \( F \)?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.