SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

1 / 44

The population of a certain bacteria colony is initially 2,000. The population doubles every 30 minutes. Which equation represents the population \( p \) after \( x \) hours?

2 / 44

A national park has an area of 10,240,000 square yards. What is the area, in square miles, of this park? (1 mile = 1760 yards)

3 / 44

A gardener used water to fill watering cans. The function h(x) = -2x + 20 approximates the volume, in liters, of water the gardener had remaining after filling x watering cans. Which statement is the best interpretation of the y-intercept of the graph of y=h(x) in the xy-plane in this context?

4 / 44

\(x^2 - 8x + 7 = 0.\) One solution to the given equation can be written as \(4 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

5 / 44

q(t) = 600 - 10t
The function q models the amount of liquid, in liters, in a tank t minutes after it begins draining. According to the model, what is the predicted amount of liquid, in milliliters, draining from the tank every 2 hours?

6 / 44

The number of cells in a lab experiment is given by \( j(t) = 100,000 \cdot (1.03)^{t/350} \), where \( t \) is in minutes. How much time, in hours, will it take for the cell count to double?

7 / 44

One gallon of paint will cover 200 square feet of a surface. A room has a total wall area of \(w\) square feet. Which equation represents the total amount of paint \(P\), in gallons, needed to paint the walls of the room twice?

8 / 44

Given the system of equations:

\( 18x + y = 81 \)
\( 3x + y = 27 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

9 / 44

Square P has side lengths that are 20 times the side lengths of square Q. The area of square P is \( k \) times the area of square Q. What is the value of \( k \)?

10 / 44

3x + 5y = 24

6x = 10y - b

In the given system of equations, b is a constant. If the system has no solution, what is the value of b?

11 / 44

\(x(qx - 64) = -20.\) In the given equation, q is an integer constant. If the equation has no real solution, what is the least possible value of q?

12 / 44

In similar triangles XYZ and PQR, angle X corresponds to angle P and angles Y and Q are right angles. If \( \sin(X) = \frac{5}{13} \), what is the value of \( \sin(P) \)?

13 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 2x - 3y = 7 \) and \( 4x - 6y = 20 \)

14 / 44

If \(\frac{m}{n} = 3\) and \(\frac{18m}{pn} = 3\), what is the value of \(p\)?

15 / 44

The exponential function \( m \) is defined by \( m(x) = 16 \cdot q^x \), where \( q \) is a positive constant. If \( m(3) = 4096 \), what is \( m(\frac{1}{4}) \)?

16 / 44

The function \( f(x) = \frac{1}{6}(x - 10)^2 + 4 \) describes the height of a basketball above the court \( f(x) \), in feet, \( x \) seconds after it was thrown, where \(\) 0 < x < 20 [/latex]. Which of the following is the best interpretation of the vertex of the graph of [latex] y = f(x) [/latex] in the [latex] xy [/latex]-plane?

17 / 44

A lake has an area of 5,904,900 square yards. What is the area, in square miles, of this lake? (1 mile = 1760 yards)

18 / 44

The function \( f(x) = \frac{1}{16}(x - 5)^2 + 2 \) gives a roller coaster car's height above the ground \( f(x) \), in feet, \( x \) seconds after it started moving on a track, where \(\) 0 < x < 12 [/latex]. Which of the following is the best interpretation of the vertex of the graph of [latex] y = f(x) [/latex] in the [latex] xy [/latex]-plane?

19 / 44

Triangle ABC is similar to triangle DEF, where angle A corresponds to angle D and angles B and E are right angles. If \( \sin(A) = \frac{120}{125} \), what is the value of \( \sin(D) \)?

20 / 44

\(k(x) = 4800(0.68)^{x/6}\)

The function \(k\) models the depreciation in the value of a computer, in dollars, after \(x\) months. If the computer's value decreases each year by \(p\)% of its value from the preceding year, what is the value of \(p\)?

21 / 44

A line in the xy-plane has a slope of \( \frac{3}{5} \) and passes through the point \( (2, -4) \). Which of the following equations represents this line?

22 / 44

Consider the system of inequalities: \( y \geq 4x - 1 \) and \( y \leq x + 5 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

23 / 44

The measure of angle S is \( \frac{2\pi}{3} \) radians. The measure of angle T is \( \frac{\pi}{4} \) radians greater than the measure of angle S. What is the measure of angle T, in degrees?

24 / 44

In the equation \( y = x^2 - 16x + 40 \), which relates \( x \) and \( y \), for what value of \( x \) does \( y \) reach its minimum?

25 / 44

2x - 3y = 10 + k

5y = 6x - 3

In the given system of equations, k is a constant. If the system has no solution, what is the value of k?

26 / 44

A right triangle has legs with lengths of \( 16 , \text{cm} \) and \( 30 , \text{cm} \). If the length of the hypotenuse, in cm, can be written in the form \( 2\sqrt{d} \), where \( d \) is an integer, what is the value of \( d \)?

27 / 44

In the given equation, \( (7x + p)(5x^2 - 25)(4x^2 - 14x + 5p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( 10 \). What is the value of \( p \)?

28 / 44

The function \( f(x) = \frac{1}{9}(x - 7)^2 + 3 \) gives a metal ball's height above the ground \( f(x) \), in inches, \( x \) seconds after it started moving on a track, where \(\) 0 < x < 10 [/latex]. Which of the following is the best interpretation of the vertex of the graph of [latex] y = f(x) [/latex] in the [latex] xy [/latex]-plane?

29 / 44

Which ordered pair is a solution to the given system of equations:

\( y = (x + 3)(x - 5) \)
\( y = 4x - 10 \)

30 / 44

\(m(x) = 7500(0.70)^{x/12}\)

The function \(m\) gives the value, in dollars, of a piece of laboratory equipment after \(x\) months of use. If the equipment's value decreases each year by \(q\)% of its value from the preceding year, what is the value of \(q\)?

31 / 44

Value: 7, 14, 21, 28, 35

Data set A frequency: 10, 8, 6, 4, 2

Data set B frequency: 2, 4, 6, 8, 10

Data set A and Data set B each contain 30 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

32 / 44

\( 5(x + 3) = 5x + 15 \). How many solutions does the given equation have?

33 / 44

In a recent referendum, 4 times as many people voted against a measure as those who voted in favor of it. A survey indicated that 12,000 more people voted against it than in favor. How many people voted in favor of the measure?

34 / 44

In the given equation, \( (4x + p)(6x^2 - 36)(3x^2 - 18x + 9p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( 8 \). What is the value of \( p \)?

35 / 44

The measure of angle A is \( \frac{\pi}{4} \) radians. The measure of angle B is \( \frac{3\pi}{8} \) radians greater than the measure of angle A. What is the measure of angle B, in degrees?

36 / 44

The exponential function \( g \) is defined by \( g(x) = 25 \cdot b^x \), where \( b \) is a positive constant. If \( g(2) = 625 \), what is \( g(\frac{1}{2}) \)?

37 / 44

\( 10a - 3 = 10(a - 0.3) + 0 \). How many solutions does the given equation have?

38 / 44

\(x = \frac{h}{3y + 8z}\). The given equation relates the distinct positive numbers \(x, h, y,\) and \(z\). Which equation correctly expresses \(3y + 8z\) in terms of \(x\) and \(h\)?

39 / 44

A garden contains a 6-square-meter vegetable patch and a 12-square-meter flower bed. The total number of plants in the garden is 216. The equation 6𝑣 + 12𝑓 = 216 represents this situation. Which of the following is the best interpretation of 𝑣 in this context?

40 / 44

The function \( F(x) = \frac{9}{5}(x - 273.15) + 32 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 2.10 kelvins, by how much did the temperature increase in degrees Fahrenheit?

41 / 44

If \(\frac{r}{s} = 6\) and \(\frac{48r}{ks} = 6\), what is the value of \(k\)?

42 / 44

A farm includes a 10-acre orchard and a 30-acre pasture. The total number of apple trees on the farm is 1,800. The equation 10𝑎 + 30𝑏 = 1,800 represents this situation. Which of the following is the best interpretation of 𝑎 in this context?

43 / 44

Given the equation \( 2x(x - 4) + 12 = 6x(2 - x) \), what is the sum of the solutions to the given equation?

44 / 44

66x = 66x. How many solutions does the given equation have?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.