SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

1 / 44

The growth of a bacterial culture is described by \( b(t) = 15,000 \cdot (1.06)^{t/100} \), with \( t \) in minutes. How much time, in hours, does it take for the bacteria count to double?

2 / 44

The given equation describes the relationship between the number of cats, \( x \), and the number of dogs, \( y \), that can be cared for at a pet shelter on a given day. If the shelter cares for 24 dogs on a given day, how many cats can it care for on this day?

\( 3.5x + 7y = 140 \)

3 / 44

Square R has side lengths that are 12 times the side lengths of square S. The area of square R is \( k \) times the area of square S. What is the value of \( k \)?

4 / 44

The function \( f \) is defined by \( f(x) = 5x - 15 \). The graph of \( y = f(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

5 / 44

A right triangle has legs with lengths of \( 16 , \text{cm} \) and \( 30 , \text{cm} \). If the length of the hypotenuse, in cm, can be written in the form \( 2\sqrt{d} \), where \( d \) is an integer, what is the value of \( d \)?

6 / 44

The function \( F(x) = \frac{9}{5}(x - 273.15) + 32 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 2.10 kelvins, by how much did the temperature increase in degrees Fahrenheit?

7 / 44

The given equation relates the variables \( x \) and \( y \):

\( y = x^2 - 10x + 13 \)

For what value of \( x \) does \( y \) reach its minimum?

8 / 44

A colony of microorganisms starts with a population of 4,000. After three hours, the population has grown to 32,000. Following the exponential growth formula \( P = C(2)^{rt} \), where \( t \) represents hours, determine the value of \( r \).

9 / 44

2x - 3y = 10 + k

5y = 6x - 3

In the given system of equations, k is a constant. If the system has no solution, what is the value of k?

10 / 44

Given the equation \( 2x(x - 4) + 12 = 6x(2 - x) \), what is the sum of the solutions to the given equation?

11 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 5x + 4y = 16 \) and \( -10x - 8y = -32 \)

12 / 44

One gallon of paint will cover 150 square feet of a surface. A room has a total wall area of \(w\) square feet. Which equation represents the total amount of paint \(P\), in gallons, needed to paint the walls of the room twice?

13 / 44

\(x^2 - 10x + 2 = 0.\) One solution to the given equation can be written as \(5 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

14 / 44

f(x) = 7(2)^x. The function f is defined by the given equation. If g(x) = f(x + 4), which of the following equations defines the function g?

15 / 44

The function \( f \) is defined by \( f(x) = 400(0.5)^x \). What is the value of \( f(0) \)?

16 / 44

\( 10a - 3 = 10(a - 0.3) + 0 \). How many solutions does the given equation have?

17 / 44

Square C has side lengths that are 8 times the side lengths of square D. The area of square C is \( k \) times the area of square D. What is the value of \( k \)?

18 / 44

A city park has an area of 23,184,000 square yards. What is the area, in square miles, of this park? (1 mile = 1760 yards)

19 / 44

In the xy-plane, the equation \( 36x^2 + 432px + 36y^2 - 288py = -1296p^2 \)represents a circle. The length of the radius of the circle is np, where n and p are positive constants. What is the value of n?

20 / 44

A right triangle has legs with lengths of \( 9 , \text{cm} \) and \( 12 , \text{cm} \). If the length of the hypotenuse, in cm, can be written in the form \( 3\sqrt{d} \), where \( d \) is an integer, what is the value of \( d \)?

21 / 44

One of the factors of \(5x^3 + 35x^2 + 60x\) is \(x + b\), where \(b\) is a positive constant. What is the smallest possible value of \(b\)?

22 / 44

A researcher initially measures 8,000 units of a certain substance. Six hours later, the substance's quantity has increased to 64,000 units. Assuming exponential growth, the formula \( P = C(2)^{rt} \) represents the amount of substance, where \( C \) is a constant and \( P \) is the quantity after \( t \) hours. What is the value of \( r \)?

23 / 44

Given the system of equations:

\( 8x + 5y = 160 \)
\( 2x + y = 30 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

24 / 44

Consider the system of inequalities: \( y \geq -2x - 1 \) and \( x + 7 \geq y \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

25 / 44

The function \( g(t) = 20,000 \cdot (1.05)^{t/300} \) gives the number of cells in a population \( t \) minutes after an initial observation. How much time, in hours, does it take for the number of cells to double?

26 / 44

One of the factors of \(4x^3 + 32x^2 + 96x\) is \(x + b\), where \(b\) is a positive constant. What is the smallest possible value of \(b\)?

27 / 44

The equation \( y = x^2 - 12x + 35 \) relates \( x \) and \( y \). For what value of \( x \) does \( y \) reach its minimum?

28 / 44

Triangles \( \triangle LMN \) and \( \triangle PQR \) are congruent, where \( L \) corresponds to \( P \), and \( M \) and \( Q \) are right angles. The measure of angle \( L \) is 30°. What is the measure of angle \( R \)?

29 / 44

The function \( F(x) = \frac{9}{5}(x - 180) + 5 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 3.00 kelvins, by how much did the temperature increase in degrees Fahrenheit?

30 / 44

A scientist observes an initial population of 1,500 cells. Twelve hours later, the population grows to 24,000. Using the exponential growth formula \( P = C(2)^{rt} \), where \( P \) is the cell count at \( t \) hours, determine the value of \( r \).

31 / 44

\(j(x) = 3050(0.90)^{x/3}\)

The function \(j\) models the value, in dollars, of a vehicle after \(x\) months. If the value of the vehicle decreases each year by \(m\)% of its value from the preceding year, what is the value of \(m\)?

32 / 44

Caleb used juice to make popsicles. The function f(x) = -5x + 30 approximates the volume, in fluid ounces, of juice Caleb had remaining after making x popsicles. Which statement is the best interpretation of the y-intercept of the graph of y=f(x) in the xy-plane in this context?

33 / 44

A small business owner budgets $2,200 to purchase candles. The owner must purchase a minimum of 200 candles to maintain the discounted pricing. If the owner pays $4.90 per candle to purchase small candles and $11.60 per candle to purchase large candles, what is the maximum number of large candles the owner can purchase to stay within the budget and maintain the discounted pricing?

34 / 44

One gallon of paint will cover 180 square feet of a surface. A room has a total wall area of \(w\) square feet. Which equation represents the total amount of paint \(P\), in gallons, needed to paint the walls of the room twice?

35 / 44

Given \(f(x) = 2x^2 + 8x + 6\), define the function \(g(x) = f(x + 1)\). For what value of \(x\) does \(g(x)\) reach its minimum?

36 / 44

Poll results:
Candidate P - 725 votes
Candidate Q - 275 votes

According to the poll of 1,000 voters, Candidate P received 725 votes, and Candidate Q received 275 votes. If 8,000 people vote in the election, how many more votes would Candidate P receive compared to Candidate Q?

37 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 3x + 5y = 25 \) and \( 6x + 10y = 50 \)

38 / 44

\(x^2 - 4x - 5 = 0.\) One solution to the given equation can be written as \(2 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

39 / 44

\(x(mx - 40\) = -25. In the given equation, m is an integer constant. If the equation has no real solution, what is the least possible value of m?

40 / 44

For \(x > 0\), the function \(q\) is defined as follows: \(q(x)\) equals 130% of \(x\). Which of the following could describe this function?

41 / 44

\(p = \frac{k}{7m + 5n}\). The given equation relates the distinct positive numbers \(p, k, m,\) and \(n\). Which equation correctly expresses \(7m + 5n\) in terms of \(p\) and \(k\)?

42 / 44

The function \( F(x) = \frac{9}{5}(x - 200) + 10 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 4.50 kelvins, by how much did the temperature increase in degrees Fahrenheit?

43 / 44

What percentage of \(400\) is \(120\)?

44 / 44

The table below gives the coordinates of two points on a line in the xy-plane:

| x | y |
|----|----|
| \(p\) | -7 |
| \(p + 8\) | 21 |

The y-intercept of the line is at \((p - 6, b)\), where \(p\) and \(b\) are constants. What is the value of \(b\)?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.