SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

SAT Randomized Questions - 1 Full Math Practice Test - Answers and Detailed Explanations at the END

1 / 44

Square M has side lengths that are 15 times the side lengths of square N. The area of square M is \( k \) times the area of square N. What is the value of \( k \)?

2 / 44

In the given equation, \( (2x + p)(3x^2 - 15)(5x^2 - 20x + 3p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( \frac{25}{2} \). What is the value of \( p \)?

3 / 44

The function \( g(t) = 20,000 \cdot (1.05)^{t/300} \) gives the number of cells in a population \( t \) minutes after an initial observation. How much time, in hours, does it take for the number of cells to double?

4 / 44

Square P has side lengths that are 20 times the side lengths of square Q. The area of square P is \( k \) times the area of square Q. What is the value of \( k \)?

5 / 44

\(x(nx - 72)\) = -36. In the given equation, n is an integer constant. If the equation has no real solution, what is the least possible value of n?

6 / 44

Consider the system of inequalities: \( y \leq 3x + 4 \) and \( y \geq -x - 5 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

7 / 44

\(p = \frac{k}{7m + 5n}\). The given equation relates the distinct positive numbers \(p, k, m,\) and \(n\). Which equation correctly expresses \(7m + 5n\) in terms of \(p\) and \(k\)?

8 / 44

The table below gives the coordinates of two points on a line in the xy-plane:

| x | y |
|----|----|
| \(q\) | -10 |
| \(q - 9\) | -40 |

The y-intercept of the line is at \((q + 5, b)\), where \(q\) and \(b\) are constants. What is the value of \(b\)?

9 / 44

Which ordered pair is a solution to the given equations:

\( y = (x - 4)(x + 1) \)
\( y = 3x - 7 \)

10 / 44

\(h(x) = 12000(0.82)^{x/4}\)

The function \(h\) gives the value, in dollars, of a machine after \(x\) months of operation. If the machine’s value decreases each year by \(r\)% of its value from the preceding year, what is the value of \(r\)?

11 / 44

A national park has an area of 10,240,000 square yards. What is the area, in square miles, of this park? (1 mile = 1760 yards)

12 / 44

A gardener used water to fill watering cans. The function h(x) = -2x + 20 approximates the volume, in liters, of water the gardener had remaining after filling x watering cans. Which statement is the best interpretation of the y-intercept of the graph of y=h(x) in the xy-plane in this context?

13 / 44

A city park has an area of 23,184,000 square yards. What is the area, in square miles, of this park? (1 mile = 1760 yards)

14 / 44

In a recent referendum, 4 times as many people voted against a measure as those who voted in favor of it. A survey indicated that 12,000 more people voted against it than in favor. How many people voted in favor of the measure?

15 / 44

The exponential function \( m \) is defined by \( m(x) = 16 \cdot q^x \), where \( q \) is a positive constant. If \( m(3) = 4096 \), what is \( m(\frac{1}{4}) \)?

16 / 44

The function \( h \) is defined by \( h(x) = 10 \cdot c^x \), where \( c \) is a positive constant. If \( h(4) = 810 \), what is \( h(-1) \)?

17 / 44

\(x = \frac{h}{3y + 8z}\). The given equation relates the distinct positive numbers \(x, h, y,\) and \(z\). Which equation correctly expresses \(3y + 8z\) in terms of \(x\) and \(h\)?

18 / 44

Triangles \( \triangle XYZ \) and \( \triangle ABC \) are congruent, where \( X \) corresponds to \( A \), and \( Y \) and \( B \) are right angles. If the measure of angle \( Z \) is 70°, what is the measure of angle \( C \)?

19 / 44

A lake has an area of 5,904,900 square yards. What is the area, in square miles, of this lake? (1 mile = 1760 yards)

20 / 44

The function \( f \) is defined by \( f(x) = 5x - 15 \). The graph of \( y = f(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

21 / 44

\( 10a - 3 = 10(a - 0.3) + 0 \). How many solutions does the given equation have?

22 / 44

The given equation describes the relationship between the number of cats, \( x \), and the number of dogs, \( y \), that can be cared for at a pet shelter on a given day. If the shelter cares for 24 dogs on a given day, how many cats can it care for on this day?

\( 3.5x + 7y = 140 \)

23 / 44

Given the system of equations:

\( 8x + 5y = 160 \)
\( 2x + y = 30 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

24 / 44

The equation describes the relationship between the number of rabbits, \( m \), and the number of guinea pigs, \( t \), that a pet care center can accommodate. If the center cares for 30 guinea pigs, how many rabbits can it care for?

\( 6m + 2t = 180 \)

25 / 44

For the function p, the value of p(x) decreases by 60% for every increase in the value of x by 1. If p(0) = 50, which equation defines p?

26 / 44

Given the system of equations:

\( 18x + y = 81 \)
\( 3x + y = 27 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

27 / 44

The given equation relates the variables \( x \) and \( y \):

\( y = x^2 - 10x + 13 \)

For what value of \( x \) does \( y \) reach its minimum?

28 / 44

The function \( F(x) = \frac{9}{5}(x - 250) + 20 \) gives the temperature in degrees Fahrenheit that corresponds to a temperature of \( x \) kelvins. If a temperature increased by 1.50 kelvins, by how much did the temperature increase in degrees Fahrenheit?

29 / 44

f(x) = 7(2)^x. The function f is defined by the given equation. If g(x) = f(x + 4), which of the following equations defines the function g?

30 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 3x + 5y = 25 \) and \( 6x + 10y = 50 \)

31 / 44

Starting with 5,000 bacteria, a biologist records 40,000 bacteria after five hours. If the growth follows \( P = C(2)^{rt} \), where \( P \) is the bacterial count and \( t \) is time in hours, what is the value of \( r \)?

32 / 44

If \( 45 \) is \( p \% \) of \( 90 \), what is \( p \% \) of \( 45 \)?

33 / 44

Consider the system of inequalities: \( y \geq 2x + 3 \) and \( x + y \leq 7 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

34 / 44

The measure of angle S is \( \frac{2\pi}{3} \) radians. The measure of angle T is \( \frac{\pi}{4} \) radians greater than the measure of angle S. What is the measure of angle T, in degrees?

35 / 44

f(x) = 8(5)^x. The function f is defined by the given equation. If g(x) = f(x + 2), which of the following equations defines the function g?

36 / 44

In the xy-plane, the equation \( 16x^2 + 192px + 16y^2 - 128py = -1024p^2 \)represents a circle. The length of the radius of the circle is np, where n and p are positive constants. What is the value of n?

37 / 44

Given the system of equations:

\( 10x + 6y = 120 \)
\( 2x + y = 15 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

38 / 44

Poll results:
Angel Cruz - 483 votes
Terry Smith - 320 votes

The table above shows the results of a poll. A total of 803 voters selected at random were asked which candidate they would vote for in the upcoming election. According to the poll, if 6,424 people vote in the election, by how many votes would Angel Cruz be expected to win?

39 / 44

In the given equation, \( (5x + p)(4x^2 - 32)(2x^2 - 10x + 2p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( 15 \). What is the value of \( p \)?

40 / 44

\(j(x) = 3050(0.90)^{x/3}\)

The function \(j\) models the value, in dollars, of a vehicle after \(x\) months. If the value of the vehicle decreases each year by \(m\)% of its value from the preceding year, what is the value of \(m\)?

41 / 44

\(x^2 - 6x + 3 = 0.\) One solution to the given equation can be written as \(3 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

42 / 44

\(x(qx - 64) = -20.\) In the given equation, q is an integer constant. If the equation has no real solution, what is the least possible value of q?

43 / 44

What percentage of \(500\) is \(250\)?

44 / 44

The exponential function \( g \) is defined by \( g(x) = 25 \cdot b^x \), where \( b \) is a positive constant. If \( g(2) = 625 \), what is \( g(\frac{1}{2}) \)?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.