SAT - Free Full Practice Tests and Questions by Category <- SAT Math Full Practice Test <- SAT Math Randomized Questions - 3 Full Math Practice Tests - Answers and Detailed Explanations at the END

SAT Math Randomized Questions - 3 Full Math Practice Tests - Answers and Detailed Explanations at the END

SAT Math Randomized Questions - 3 Full Math Practice Tests - Answers and Detailed Explanations at the END

1 / 44

\(x(qx - 64) = -20.\) In the given equation, q is an integer constant. If the equation has no real solution, what is the least possible value of q?

2 / 44

The exponential function \( f \) is defined by \( f(x) = 8 \cdot d^x \), where \( d \) is a positive constant. If \( f(3) = 1024 \), what is \( f(-2) \)?

3 / 44

A line in the xy-plane has a slope of \( \frac{3}{5} \) and passes through the point \( (2, -4) \). Which of the following equations represents this line?

4 / 44

If \( 39 \) is \( p \% \) of \( 65 \), what is \( p \% \) of \( 39 \)?

5 / 44

A line in the xy-plane has a slope of \( -2 \) and passes through the point \( (3, 7) \). Which of the following equations represents this line?

6 / 44

\(p = \frac{k}{7m + 5n}\). The given equation relates the distinct positive numbers \(p, k, m,\) and \(n\). Which equation correctly expresses \(7m + 5n\) in terms of \(p\) and \(k\)?

7 / 44

The function \( f(x) = \frac{1}{6}(x - 10)^2 + 4 \) describes the height of a basketball above the court \( f(x) \), in feet, \( x \) seconds after it was thrown, where \(\) 0 < x < 20 [/latex]. Which of the following is the best interpretation of the vertex of the graph of [latex] y = f(x) [/latex] in the [latex] xy [/latex]-plane?

8 / 44

Caleb used juice to make popsicles. The function f(x) = -5x + 30 approximates the volume, in fluid ounces, of juice Caleb had remaining after making x popsicles. Which statement is the best interpretation of the y-intercept of the graph of y=f(x) in the xy-plane in this context?

9 / 44

The function \( g \) is defined by \( g(x) = -2x + 10 \). The graph of \( y = g(x) \) in the xy-plane has an x-intercept at \( (a, 0) \) and y-intercept at \( (0, b) \), where \( a \) and \( b \) are constants. What is the value of \( a + b \)?

10 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( y = 3x + 7 \)
\( y = 3x - 4 \)

11 / 44

A right triangle has legs with lengths of \( 5 , \text{cm} \) and \( 12 , \text{cm} \). If the length of the hypotenuse, in cm, can be written in the form \( \sqrt{d} \), where \( d \) is an integer, what is the value of \( d \)?

12 / 44

Let \(f(x) = 5x^2 - 20x + 95\) and define \(g(x) = f(x + 3)\). For what value of \(x\) does \(g(x)\) reach its minimum?

13 / 44

Consider the system of inequalities: \( y \leq -x + 4 \) and \( 2x + y \geq 1 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

14 / 44

A line in the xy-plane has a slope of \( \frac{7}{8} \) and passes through the point \( (4, -1) \). Which of the following equations represents this line?

15 / 44

What percentage of \(700\) is \(350\)?

16 / 44

The equation \( y = x^2 - 12x + 35 \) relates \( x \) and \( y \). For what value of \( x \) does \( y \) reach its minimum?

17 / 44

4x + my = 12

2x = 5 - 3y

In the given system of equations, m is a constant. If the system has no solution, what is the value of m?

18 / 44

Consider the system of inequalities: \( y \leq 3x + 4 \) and \( y \geq -x - 5 \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

19 / 44

Which ordered pair is a solution to the following equations:

\( y = (x - 1)(x + 2) \)
\( y = 3x - 3 \)

20 / 44

A cube has a volume of 343 cubic units. What is the surface area, in square units, of the cube?

21 / 44

For the function k, the value of k(x) increases by 50% for every increase in the value of x by 1. If k(0) = 80, which equation defines k?

22 / 44

At how many points do the graphs of the given equations intersect in the xy-plane?

\( 2x - 3y = 7 \) and \( 4x - 6y = 20 \)

23 / 44

\(x^2 - 4x - 5 = 0.\) One solution to the given equation can be written as \(2 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

24 / 44

The measure of angle S is \( \frac{2\pi}{3} \) radians. The measure of angle T is \( \frac{\pi}{4} \) radians greater than the measure of angle S. What is the measure of angle T, in degrees?

25 / 44

A researcher initially measures 8,000 units of a certain substance. Six hours later, the substance's quantity has increased to 64,000 units. Assuming exponential growth, the formula \( P = C(2)^{rt} \) represents the amount of substance, where \( C \) is a constant and \( P \) is the quantity after \( t \) hours. What is the value of \( r \)?

26 / 44

The following equation relates the variables \( x \) and \( y \):

\( y = x^2 - 8x + 18 \)

For what value of \( x \) does \( y \) reach its minimum?

27 / 44

Value: 8, 16, 24, 32, 40

Data set A frequency: 5, 5, 10, 5, 5

Data set B frequency: 6, 8, 6, 8, 6

Data set A and Data set B each contain 30 values. The table shows the frequencies of the values for each data set. Which of the following statements best compares the means of the two data sets?

28 / 44

In triangles ABC and DEF, which are similar, angle B corresponds to angle E, and angles A and D are right angles. If \( \sin(B) = \frac{9}{15} \), what is the value of \( \sin(E) \)?

29 / 44

h(t) = 200 - 5t
The function h models the amount of water, in gallons, in a container t hours after it begins to leak. According to the model, what is the predicted amount of water, in pints, leaking from the container each day?

30 / 44

Consider the system of inequalities: \( y \geq -2x - 1 \) and \( x + 7 \geq y \). Which point \( (x, y) \) is a solution to the system in the xy-plane?

31 / 44

The equation below relates \( x \) and \( y \):

\( y = x^2 - 6x + 15 \)

For what value of \( x \) does \( y \) reach its minimum?

32 / 44

In similar triangles XYZ and PQR, angle X corresponds to angle P and angles Y and Q are right angles. If \( \sin(X) = \frac{5}{13} \), what is the value of \( \sin(P) \)?

33 / 44

The given equation describes the relationship between the number of cats, \( x \), and the number of dogs, \( y \), that can be cared for at a pet shelter on a given day. If the shelter cares for 24 dogs on a given day, how many cats can it care for on this day?

\( 3.5x + 7y = 140 \)

34 / 44

A baker used dough to make loaves of bread. The function g(x) = -3x + 50 approximates the amount of dough, in pounds, the baker had remaining after making x loaves of bread. Which statement is the best interpretation of the y-intercept of the graph of y=g(x) in the xy-plane in this context?

35 / 44

A scientist observes an initial population of 1,500 cells. Twelve hours later, the population grows to 24,000. Using the exponential growth formula \( P = C(2)^{rt} \), where \( P \) is the cell count at \( t \) hours, determine the value of \( r \).

36 / 44

A line in the xy-plane has a slope of \( \frac{1}{3} \) and passes through the point \( (-3, 5) \). Which of the following equations represents this line?

37 / 44

In the given equation, \( (7x + p)(5x^2 - 25)(4x^2 - 14x + 5p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( 10 \). What is the value of \( p \)?

38 / 44

In the given equation, \( (2x + p)(3x^2 - 15)(5x^2 - 20x + 3p) = 0 \), where \( p \) is a positive constant. The sum of the solutions to the equation is \( \frac{25}{2} \). What is the value of \( p \)?

39 / 44

Given the system of equations:

\( 10x + 6y = 120 \)
\( 2x + y = 15 \)

The solution to the system is \( (x, y) \). What is the value of \( y \)?

40 / 44

Which ordered pair is a solution to the given equations:

\( y = (x + 4)(x - 2) \)
\( y = 5x - 4 \)

41 / 44

\(x^2 - 12x + 11 = 0.\) One solution to the given equation can be written as \(6 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

42 / 44

\(x^2 - 8x + 7 = 0.\) One solution to the given equation can be written as \(4 + \sqrt{k}\), where \(k\) is a constant. What is the value of \(k\)?

43 / 44

The equation describes the relationship between the number of parrots, \( p \), and the number of snakes, \( s \), that can be cared for in a wildlife rehabilitation center. If the center cares for 10 snakes, how many parrots can it care for?

\( 4p + 2s = 100 \)

44 / 44

\(x = \frac{h}{3y + 8z}\). The given equation relates the distinct positive numbers \(x, h, y,\) and \(z\). Which equation correctly expresses \(3y + 8z\) in terms of \(x\) and \(h\)?

Your score is

0%

About This Quiz

There are 260 questions available for this test bank, every time you refresh the page, we will display a different question. This test is worth 6 full practice tests, but it will only show you 44 questions at a time just like on the real SAT exam. Do NOT refresh the page if you want to finish one set of practice questions at a time. There may be errors with certain questions. Please skip those as we are currently fixing them.